marieke93's picture
update model card README.md
5ab1637
|
raw
history blame
3.64 kB
metadata
license: mit
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: MiniLM-evidence-types
    results: []

MiniLM-evidence-types

This model is a fine-tuned version of microsoft/MiniLM-L12-H384-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.3471
  • Macro f1: 0.4351
  • Weighted f1: 0.7056
  • Accuracy: 0.7207
  • Balanced accuracy: 0.4063

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Macro f1 Weighted f1 Accuracy Balanced accuracy
1.249 1.0 250 1.1782 0.2143 0.5844 0.6385 0.2417
1.0481 2.0 500 1.0009 0.3079 0.6757 0.6865 0.3192
0.903 3.0 750 1.0094 0.3105 0.6840 0.6986 0.3179
0.7604 4.0 1000 1.0636 0.3817 0.6834 0.6994 0.3751
0.6367 5.0 1250 1.0813 0.3999 0.6963 0.7108 0.3945
0.5293 6.0 1500 1.1597 0.3909 0.6920 0.6986 0.3895
0.4097 7.0 1750 1.3520 0.3517 0.6739 0.6865 0.3757
0.3442 8.0 2000 1.5343 0.4012 0.6684 0.6743 0.4028
0.2663 9.0 2250 1.5623 0.4241 0.7007 0.7154 0.4052
0.2383 10.0 2500 1.6971 0.4327 0.7080 0.7169 0.4179
0.2053 11.0 2750 1.7675 0.4331 0.7073 0.7177 0.4199
0.1698 12.0 3000 1.8678 0.4381 0.7103 0.7298 0.4097
0.1467 13.0 3250 2.0007 0.4343 0.7113 0.7268 0.4082
0.1098 14.0 3500 2.0797 0.4267 0.7004 0.7131 0.3986
0.1049 15.0 3750 2.2048 0.4190 0.7037 0.7192 0.3939
0.0912 16.0 4000 2.2582 0.4263 0.6903 0.7024 0.4003
0.0678 17.0 4250 2.2735 0.4276 0.7052 0.7222 0.4019
0.0623 18.0 4500 2.3478 0.4317 0.7048 0.7207 0.4030
0.0546 19.0 4750 2.3598 0.4298 0.7043 0.7207 0.4003
0.0415 20.0 5000 2.3471 0.4351 0.7056 0.7207 0.4063

Framework versions

  • Transformers 4.19.2
  • Pytorch 1.11.0+cu113
  • Datasets 2.2.2
  • Tokenizers 0.12.1