BERT-evidence-types / README.md
marieke93's picture
update model card README.md
247eaff
|
raw
history blame
3.61 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: BERT-evidence-types
    results: []

BERT-evidence-types

This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.4683
  • Macro f1: 0.3854
  • Weighted f1: 0.6985
  • Accuracy: 0.7116
  • Balanced accuracy: 0.3720

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Macro f1 Weighted f1 Accuracy Balanced accuracy
1.1736 1.0 125 1.0715 0.2535 0.6525 0.6667 0.2721
0.8182 2.0 250 0.9876 0.3068 0.6769 0.6804 0.3152
0.6024 3.0 375 1.0436 0.4067 0.7024 0.7047 0.4089
0.4004 4.0 500 1.1912 0.4045 0.6988 0.7078 0.4050
0.2531 5.0 625 1.3408 0.3882 0.6861 0.6903 0.3967
0.1625 6.0 750 1.5378 0.3866 0.6951 0.7040 0.3807
0.0985 7.0 875 1.7579 0.3850 0.6990 0.7161 0.3824
0.0664 8.0 1000 1.9837 0.3609 0.6849 0.7032 0.3529
0.0411 9.0 1125 2.0033 0.3807 0.6929 0.7024 0.3618
0.0262 10.0 1250 2.1714 0.3771 0.6924 0.7085 0.3585
0.0204 11.0 1375 2.2539 0.3734 0.6832 0.6933 0.3658
0.0141 12.0 1500 2.3033 0.3654 0.6830 0.6979 0.3556
0.0118 13.0 1625 2.3853 0.3679 0.6912 0.7108 0.3520
0.0109 14.0 1750 2.3749 0.3810 0.6952 0.7100 0.3665
0.0078 15.0 1875 2.4042 0.3777 0.6942 0.7078 0.3645
0.0079 16.0 2000 2.5097 0.3790 0.6938 0.7123 0.3632
0.0073 17.0 2125 2.4305 0.3844 0.6957 0.7070 0.3725
0.0046 18.0 2250 2.4700 0.3762 0.6941 0.7093 0.3638
0.0064 19.0 2375 2.4566 0.3844 0.6974 0.7100 0.3713
0.0057 20.0 2500 2.4683 0.3854 0.6985 0.7116 0.3720

Framework versions

  • Transformers 4.19.2
  • Pytorch 1.11.0+cu113
  • Datasets 2.2.2
  • Tokenizers 0.12.1