You need to agree to share your contact information to access this model

This repository is publicly accessible, but you have to accept the conditions to access its files and content.

Log in or Sign Up to review the conditions and access this model content.

IMPORTS

pip install trl peft torch datasets transformers jupyterlab accelerate tiktoken matplotlib bitsandbytes evaluate scikit-learn

CODE

from huggingface_hub import login
access_token = "secret-token"
login(token=access_token)

import torch
import datasets
from peft import PeftModel
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, AutoModel, TFBertForQuestionAnswering,TFAutoModelWithLMHead

GPU_use = 0
st = "cuda:"+str(GPU_use)
torch.cuda.set_device(GPU_use)

ds = datasets.load_dataset('marcomaccarini/ds_robot_33_large')

trn = ds['train']

base_model = 'meta-llama/Meta-Llama-3-8B'
tokr = AutoTokenizer.from_pretrained(base_model)
model = AutoModelForCausalLM.from_pretrained("marcomaccarini/SynthLA", torch_dtype=torch.bfloat16, device_map=GPU_use,token=access_token)

fmt = """
Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
USER: {}
===
{}
ASSISTANT:"""

def sql_prompt(d): 
    return fmt.format(d["context"], d["question"])
def question(table, quest):
    tst = dict(**trn[8])
    tst['context'] = table
    tst['question'] = quest
    return sql_prompt(tst)

t = 'table([ eof x: 85 y: 179 z: 548, gripper: open , black-cup x: -54 y: -27 z: 80, white-cup x: -5 y: 59 z: 60, box x: -30 y: 34 z: 100, green-cylinder x: 25 y: -3 z: 80 or: 142, green-cube x: -390 y: -490 z: 80 or: 83, grey-cube x: 56 y: -22 z: 80 or: 96, red-cube x: -32 y: 58 z: 80 or: 157, yellow-ball x: -21 y: 30 z: 20 or: 41, banana x: 2 y: 53 z: 20 or: 9, remote x: -48 y: 31 z: 30 or: 69, pen x: -53 y: -59 z: 10 or: 174 ])'
q = 'pick green-cube and place to black-cup'

test = question(t,q)
toks = tokr(test, return_tensors="pt")
res = model.generate(**toks.to(st), max_new_tokens=100, top_p = 0).to('cpu')

print(tokr.batch_decode(res)[0].replace("*","\n"))


Downloads last month
0
Safetensors
Model size
8.03B params
Tensor type
BF16
·
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for marcomaccarini/SynthLA

Adapter
(146)
this model

Dataset used to train marcomaccarini/SynthLA