layoutlm-funsd / README.md
marcoCasamento's picture
End of training
6e3806b verified
metadata
license: mit
base_model: microsoft/layoutlm-base-uncased
tags:
  - generated_from_trainer
datasets:
  - funsd
model-index:
  - name: layoutlm-funsd
    results: []

layoutlm-funsd

This model is a fine-tuned version of microsoft/layoutlm-base-uncased on the funsd dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0554
  • Answer: {'precision': 0.4105691056910569, 'recall': 0.49938195302843014, 'f1': 0.45064138315672064, 'number': 809}
  • Header: {'precision': 0.36470588235294116, 'recall': 0.2605042016806723, 'f1': 0.30392156862745096, 'number': 119}
  • Question: {'precision': 0.48371104815864024, 'recall': 0.6413145539906103, 'f1': 0.551473556721841, 'number': 1065}
  • Overall Precision: 0.4506
  • Overall Recall: 0.5610
  • Overall F1: 0.4998
  • Overall Accuracy: 0.6149

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Answer Header Question Overall Precision Overall Recall Overall F1 Overall Accuracy
1.7702 1.0 10 1.5768 {'precision': 0.040923399790136414, 'recall': 0.048207663782447466, 'f1': 0.04426787741203178, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.38510301109350237, 'recall': 0.22816901408450704, 'f1': 0.28655660377358494, 'number': 1065} 0.1780 0.1415 0.1577 0.3540
1.4963 2.0 20 1.4062 {'precision': 0.1941294196130754, 'recall': 0.35970333745364647, 'f1': 0.2521663778162912, 'number': 809} {'precision': 0.03571428571428571, 'recall': 0.01680672268907563, 'f1': 0.022857142857142857, 'number': 119} {'precision': 0.28505291005291006, 'recall': 0.40469483568075115, 'f1': 0.33449747768723326, 'number': 1065} 0.2361 0.3633 0.2862 0.4204
1.2983 3.0 30 1.2020 {'precision': 0.23365122615803816, 'recall': 0.42398022249690975, 'f1': 0.3012736056214317, 'number': 809} {'precision': 0.13846153846153847, 'recall': 0.07563025210084033, 'f1': 0.09782608695652173, 'number': 119} {'precision': 0.3307776560788609, 'recall': 0.5671361502347417, 'f1': 0.4178484953303355, 'number': 1065} 0.2846 0.4797 0.3572 0.4806
1.1603 4.0 40 1.1227 {'precision': 0.2243436754176611, 'recall': 0.34857849196538937, 'f1': 0.2729912875121007, 'number': 809} {'precision': 0.2222222222222222, 'recall': 0.18487394957983194, 'f1': 0.2018348623853211, 'number': 119} {'precision': 0.35071846726982436, 'recall': 0.6187793427230047, 'f1': 0.4476902173913044, 'number': 1065} 0.2977 0.4832 0.3684 0.5265
1.0771 5.0 50 1.0953 {'precision': 0.2655198204936425, 'recall': 0.4388133498145859, 'f1': 0.33084808946877914, 'number': 809} {'precision': 0.26666666666666666, 'recall': 0.20168067226890757, 'f1': 0.22966507177033493, 'number': 119} {'precision': 0.3632745878339966, 'recall': 0.6, 'f1': 0.45254957507082155, 'number': 1065} 0.3195 0.5108 0.3931 0.5453
1.0102 6.0 60 1.0388 {'precision': 0.30492285084496695, 'recall': 0.5129789864029666, 'f1': 0.3824884792626728, 'number': 809} {'precision': 0.3283582089552239, 'recall': 0.18487394957983194, 'f1': 0.2365591397849462, 'number': 119} {'precision': 0.4519543973941368, 'recall': 0.5211267605633803, 'f1': 0.4840819886611426, 'number': 1065} 0.3735 0.4977 0.4268 0.5839
0.9312 7.0 70 1.0265 {'precision': 0.32556131260794474, 'recall': 0.46600741656365885, 'f1': 0.3833248601931876, 'number': 809} {'precision': 0.2828282828282828, 'recall': 0.23529411764705882, 'f1': 0.25688073394495414, 'number': 119} {'precision': 0.47326007326007324, 'recall': 0.6065727699530516, 'f1': 0.5316872427983539, 'number': 1065} 0.4008 0.5273 0.4555 0.5969
0.8732 8.0 80 1.0508 {'precision': 0.33681073025335323, 'recall': 0.5587144622991347, 'f1': 0.4202696420269642, 'number': 809} {'precision': 0.3561643835616438, 'recall': 0.2184873949579832, 'f1': 0.2708333333333333, 'number': 119} {'precision': 0.4556126192223037, 'recall': 0.5830985915492958, 'f1': 0.5115321252059308, 'number': 1065} 0.3956 0.5514 0.4607 0.5947
0.808 9.0 90 1.0282 {'precision': 0.36807511737089205, 'recall': 0.484548825710754, 'f1': 0.41835645677694777, 'number': 809} {'precision': 0.3058823529411765, 'recall': 0.2184873949579832, 'f1': 0.2549019607843137, 'number': 119} {'precision': 0.46965317919075145, 'recall': 0.6103286384976526, 'f1': 0.5308289097590853, 'number': 1065} 0.4215 0.5359 0.4718 0.6085
0.7928 10.0 100 1.0475 {'precision': 0.38683498647430115, 'recall': 0.5302843016069221, 'f1': 0.44734098018769547, 'number': 809} {'precision': 0.36363636363636365, 'recall': 0.23529411764705882, 'f1': 0.2857142857142857, 'number': 119} {'precision': 0.49149922720247297, 'recall': 0.5971830985915493, 'f1': 0.5392115303094531, 'number': 1065} 0.4407 0.5484 0.4887 0.6054
0.7164 11.0 110 1.0310 {'precision': 0.38894472361809046, 'recall': 0.4783683559950556, 'f1': 0.4290465631929047, 'number': 809} {'precision': 0.38961038961038963, 'recall': 0.25210084033613445, 'f1': 0.30612244897959184, 'number': 119} {'precision': 0.4831223628691983, 'recall': 0.6450704225352113, 'f1': 0.5524728588661038, 'number': 1065} 0.4427 0.5539 0.4921 0.6149
0.707 12.0 120 1.0295 {'precision': 0.40441176470588236, 'recall': 0.4758961681087763, 'f1': 0.43725156161272005, 'number': 809} {'precision': 0.3655913978494624, 'recall': 0.2857142857142857, 'f1': 0.32075471698113206, 'number': 119} {'precision': 0.4713031735313977, 'recall': 0.6553990610328638, 'f1': 0.5483110761979575, 'number': 1065} 0.4422 0.5605 0.4944 0.6172
0.6765 13.0 130 1.0494 {'precision': 0.4107485604606526, 'recall': 0.5290482076637825, 'f1': 0.46245272825499734, 'number': 809} {'precision': 0.4305555555555556, 'recall': 0.2605042016806723, 'f1': 0.324607329842932, 'number': 119} {'precision': 0.4879825200291333, 'recall': 0.6291079812206573, 'f1': 0.5496308449548811, 'number': 1065} 0.4540 0.5665 0.5040 0.6156
0.6489 14.0 140 1.0557 {'precision': 0.4165009940357853, 'recall': 0.5179233621755254, 'f1': 0.4617079889807163, 'number': 809} {'precision': 0.4, 'recall': 0.2689075630252101, 'f1': 0.32160804020100503, 'number': 119} {'precision': 0.4891304347826087, 'recall': 0.6338028169014085, 'f1': 0.5521472392638037, 'number': 1065} 0.4566 0.5650 0.5050 0.6142
0.6397 15.0 150 1.0554 {'precision': 0.4105691056910569, 'recall': 0.49938195302843014, 'f1': 0.45064138315672064, 'number': 809} {'precision': 0.36470588235294116, 'recall': 0.2605042016806723, 'f1': 0.30392156862745096, 'number': 119} {'precision': 0.48371104815864024, 'recall': 0.6413145539906103, 'f1': 0.551473556721841, 'number': 1065} 0.4506 0.5610 0.4998 0.6149

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2