metadata
license: apache-2.0
base_model: mansee/swin-tiny-patch4-window7-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: swin-tiny-patch4-window7-224-img_orientation
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9661252256004442
swin-tiny-patch4-window7-224-img_orientation
This model is a fine-tuned version of mansee/swin-tiny-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.1087
- Accuracy: 0.9661
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.5043 | 1.0 | 506 | 0.3764 | 0.8426 |
0.3557 | 2.0 | 1013 | 0.2068 | 0.9245 |
0.315 | 3.0 | 1519 | 0.1581 | 0.9442 |
0.2674 | 4.0 | 2026 | 0.1468 | 0.9490 |
0.2615 | 5.0 | 2532 | 0.1245 | 0.9561 |
0.2115 | 6.0 | 3039 | 0.1236 | 0.9560 |
0.2121 | 7.0 | 3545 | 0.1144 | 0.9624 |
0.2053 | 8.0 | 4052 | 0.1143 | 0.9614 |
0.1576 | 9.0 | 4558 | 0.1087 | 0.9661 |
0.2054 | 9.99 | 5060 | 0.1086 | 0.9657 |
Framework versions
- Transformers 4.33.1
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.13.3