Mann-E FLUX[Dev] Edition

How to use the model

Install needed libraries

pip install git+https://github.com/huggingface/diffusers.git transformers==4.42.4 accelerate xformers peft sentencepiece protobuf -q

Execution code

import numpy as np
import random
import torch
from diffusers import  DiffusionPipeline, FlowMatchEulerDiscreteScheduler, AutoencoderTiny, AutoencoderKL
from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5TokenizerFast

dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"

taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
pipe = DiffusionPipeline.from_pretrained("mann-e/mann-e_flux", torch_dtype=dtype, vae=taef1).to(device)
torch.cuda.empty_cache()

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048

seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)

prompt = "an astronaut riding a horse"

pipe(
            prompt=f"{prompt}",
            guidance_scale=3.5,
            num_inference_steps=10,
            width=720,
            height=1280,
            generator=generator,
            output_type="pil"
        ).images[0].save("output.png")

Tips and Tricks

  1. Adding mj-v6.1-style to the prompts specially the cinematic and photo realistic prompts can make the result quality high as hell! Give it a try.
  2. The best guidance_scale is somewhere between 3.5 and 5.0
  3. Inference steps between 8 and 16 are working very well.
Downloads last month
54
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for mann-e/mann-e_flux

Quantizations
1 model

Space using mann-e/mann-e_flux 1