Mann-E FLUX[Dev] Edition
How to use the model
Install needed libraries
pip install git+https://github.com/huggingface/diffusers.git transformers==4.42.4 accelerate xformers peft sentencepiece protobuf -q
Execution code
import numpy as np
import random
import torch
from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler, AutoencoderTiny, AutoencoderKL
from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5TokenizerFast
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
pipe = DiffusionPipeline.from_pretrained("mann-e/mann-e_flux", torch_dtype=dtype, vae=taef1).to(device)
torch.cuda.empty_cache()
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
prompt = "an astronaut riding a horse"
pipe(
prompt=f"{prompt}",
guidance_scale=3.5,
num_inference_steps=10,
width=720,
height=1280,
generator=generator,
output_type="pil"
).images[0].save("output.png")
Tips and Tricks
- Adding
mj-v6.1-style
to the prompts specially the cinematic and photo realistic prompts can make the result quality high as hell! Give it a try. - The best
guidance_scale
is somewhere between 3.5 and 5.0 - Inference steps between 8 and 16 are working very well.
- Downloads last month
- 54
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.