metadata
language:
- en
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:200000
- loss:MultipleNegativesRankingLoss
- loss:ContrastiveLoss
base_model: BAAI/bge-base-en-v1.5
widget:
- source_sentence: >-
What is the best sushi restaurant in Los Angeles, aside from Urasawa which
is impractical for regular visits?
sentences:
- How do I stop feeling sorry for ignorant and arrogant people?
- What are the best sushi restaurants in Los Angeles?
- Why do people flirt on Quora?
- source_sentence: Why are many Quora writers lonely and/ or unemployed?
sentences:
- Are writers on Quora mostly lonely or have no job (unemployed)?
- >-
What are the attributes of monkeys belongs to Japanese-macaque monkey
Family?
- >-
I want to change the education system in India. How can I have such
power?
- source_sentence: What is the best, and painless way to kill myself?
sentences:
- >-
What is a way to commit suicide and not damaging your organs so that
they can be donated?
- How do I beat insomnia?
- What is the most painless way to commit suicide?
- source_sentence: What are ETF'S and what is the difference between ETF'S and mutual funds?
sentences:
- What is the difference between ETF and mutual funds?
- What's better, an index ETF or an index mutual fund?
- 'Income Tax: How to check pan card status?'
- source_sentence: For what reasons can't the Olympics be held in India?
sentences:
- What are the best hotels to stay in Goa?
- When will Olympics be held in India?
- When will India qualify for the FIFA World Cup?
datasets:
- sentence-transformers/quora-duplicates
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy
- cosine_accuracy_threshold
- cosine_f1
- cosine_f1_threshold
- cosine_precision
- cosine_recall
- cosine_ap
- cosine_mcc
- average_precision
- f1
- precision
- recall
- threshold
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: SentenceTransformer based on BAAI/bge-base-en-v1.5
results:
- task:
type: binary-classification
name: Binary Classification
dataset:
name: quora duplicates
type: quora-duplicates
metrics:
- type: cosine_accuracy
value: 0.833
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.8065301179885864
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 0.7630522088353413
name: Cosine F1
- type: cosine_f1_threshold
value: 0.745335042476654
name: Cosine F1 Threshold
- type: cosine_precision
value: 0.6705882352941176
name: Cosine Precision
- type: cosine_recall
value: 0.8850931677018633
name: Cosine Recall
- type: cosine_ap
value: 0.8120519897128382
name: Cosine Ap
- type: cosine_mcc
value: 0.641402259734116
name: Cosine Mcc
- task:
type: paraphrase-mining
name: Paraphrase Mining
dataset:
name: quora duplicates dev
type: quora-duplicates-dev
metrics:
- type: average_precision
value: 0.6286866338232051
name: Average Precision
- type: f1
value: 0.6032452480296708
name: F1
- type: precision
value: 0.5627297495999654
name: Precision
- type: recall
value: 0.6500474596592896
name: Recall
- type: threshold
value: 0.7944510877132416
name: Threshold
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: Unknown
type: unknown
metrics:
- type: cosine_accuracy@1
value: 0.9732
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.9944
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9958
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9994
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.9732
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.432
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.27652
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.14606
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.8392449568046333
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.9654790046130339
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.9826052435636259
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9955256342023989
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.9852328208350886
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.983879365079365
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.9794253454223505
name: Cosine Map@100
SentenceTransformer based on BAAI/bge-base-en-v1.5
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5 on the mnrl and cl datasets. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Datasets:
- Language: en
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("manestay/bge-base-en-v1.5-mnrl-cl-multi")
# Run inference
sentences = [
"For what reasons can't the Olympics be held in India?",
'When will Olympics be held in India?',
'When will India qualify for the FIFA World Cup?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Binary Classification
- Dataset:
quora-duplicates
- Evaluated with
BinaryClassificationEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.833 |
cosine_accuracy_threshold | 0.8065 |
cosine_f1 | 0.7631 |
cosine_f1_threshold | 0.7453 |
cosine_precision | 0.6706 |
cosine_recall | 0.8851 |
cosine_ap | 0.8121 |
cosine_mcc | 0.6414 |
Paraphrase Mining
- Dataset:
quora-duplicates-dev
- Evaluated with
ParaphraseMiningEvaluator
with these parameters:{'add_transitive_closure': <function ParaphraseMiningEvaluator.add_transitive_closure at 0x7f26a89802c0>, 'max_pairs': 500000, 'top_k': 100}
Metric | Value |
---|---|
average_precision | 0.6287 |
f1 | 0.6032 |
precision | 0.5627 |
recall | 0.65 |
threshold | 0.7945 |
Information Retrieval
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.9732 |
cosine_accuracy@3 | 0.9944 |
cosine_accuracy@5 | 0.9958 |
cosine_accuracy@10 | 0.9994 |
cosine_precision@1 | 0.9732 |
cosine_precision@3 | 0.432 |
cosine_precision@5 | 0.2765 |
cosine_precision@10 | 0.1461 |
cosine_recall@1 | 0.8392 |
cosine_recall@3 | 0.9655 |
cosine_recall@5 | 0.9826 |
cosine_recall@10 | 0.9955 |
cosine_ndcg@10 | 0.9852 |
cosine_mrr@10 | 0.9839 |
cosine_map@100 | 0.9794 |
Training Details
Training Datasets
mnrl
- Dataset: mnrl at 451a485
- Size: 100,000 training samples
- Columns:
anchor
,positive
, andnegative
- Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 6 tokens
- mean: 13.85 tokens
- max: 42 tokens
- min: 6 tokens
- mean: 13.65 tokens
- max: 44 tokens
- min: 4 tokens
- mean: 14.76 tokens
- max: 64 tokens
- Samples:
anchor positive negative Why in India do we not have one on one political debate as in USA?
Why cant we have a public debate between politicians in India like the one in US?
Can people on Quora stop India Pakistan debate? We are sick and tired seeing this everyday in bulk?
What is OnePlus One?
How is oneplus one?
Why is OnePlus One so good?
Does our mind control our emotions?
How do smart and successful people control their emotions?
How can I control my positive emotions for the people whom I love but they don't care about me?
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
cl
- Dataset: cl at 451a485
- Size: 100,000 training samples
- Columns:
sentence1
,sentence2
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 label type string string int details - min: 6 tokens
- mean: 15.3 tokens
- max: 57 tokens
- min: 6 tokens
- mean: 15.66 tokens
- max: 56 tokens
- 0: ~62.00%
- 1: ~38.00%
- Samples:
sentence1 sentence2 label What is the step by step guide to invest in share market in india?
What is the step by step guide to invest in share market?
0
What is the story of Kohinoor (Koh-i-Noor) Diamond?
What would happen if the Indian government stole the Kohinoor (Koh-i-Noor) diamond back?
0
How can I increase the speed of my internet connection while using a VPN?
How can Internet speed be increased by hacking through DNS?
0
- Loss:
ContrastiveLoss
with these parameters:{ "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE", "margin": 0.5, "size_average": true }
Evaluation Datasets
mnrl
- Dataset: mnrl at 451a485
- Size: 1,000 evaluation samples
- Columns:
anchor
,positive
, andnegative
- Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 7 tokens
- mean: 13.84 tokens
- max: 43 tokens
- min: 6 tokens
- mean: 13.8 tokens
- max: 38 tokens
- min: 6 tokens
- mean: 14.71 tokens
- max: 56 tokens
- Samples:
anchor positive negative Which programming language is best for developing low-end games?
What coding language should I learn first for making games?
I am entering the world of video game programming and want to know what language I should learn? Because there are so many languages I do not know which one to start with. Can you recommend a language that's easy to learn and can be used with many platforms?
Was it appropriate for Meryl Streep to use her Golden Globes speech to attack Donald Trump?
Should Meryl Streep be using her position to attack the president?
Why did Kelly Ann Conway say that Meryl Streep incited peoples worst feelings?
Where can I found excellent commercial fridges in Sydney?
Where can I found impressive range of commercial fridges in Sydney?
What is the best grocery delivery service in Sydney?
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
cl
- Dataset: cl at 451a485
- Size: 1,000 evaluation samples
- Columns:
sentence1
,sentence2
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 label type string string int details - min: 5 tokens
- mean: 15.59 tokens
- max: 59 tokens
- min: 6 tokens
- mean: 15.65 tokens
- max: 76 tokens
- 0: ~63.40%
- 1: ~36.60%
- Samples:
sentence1 sentence2 label What should I ask my friend to get from UK to India?
What is the process of getting a surgical residency in UK after completing MBBS from India?
0
How can I learn hacking for free?
How can I learn to hack seriously?
1
Which is the best website to learn programming language C++?
Which is the best website to learn C++ Programming language for free?
0
- Loss:
ContrastiveLoss
with these parameters:{ "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE", "margin": 0.5, "size_average": true }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 400per_device_eval_batch_size
: 400num_train_epochs
: 100warmup_ratio
: 0.1bf16
: Trueload_best_model_at_end
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 400per_device_eval_batch_size
: 400per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 100max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | mnrl loss | cl loss | quora-duplicates_cosine_ap | quora-duplicates-dev_average_precision | cosine_ndcg@10 |
---|---|---|---|---|---|---|---|
0 | 0 | - | - | - | 0.7461 | 0.5988 | 0.9831 |
0.2 | 100 | 0.2804 | - | - | - | - | - |
0.4 | 200 | 0.2006 | - | - | - | - | - |
0.5 | 250 | - | 0.1153 | 0.0157 | 0.7661 | 0.6165 | 0.9839 |
0.6 | 300 | 0.1704 | - | - | - | - | - |
0.8 | 400 | 0.1459 | - | - | - | - | - |
1.0 | 500 | 0.1296 | 0.0835 | 0.0146 | 0.7860 | 0.6238 | 0.9843 |
1.2 | 600 | 0.1344 | - | - | - | - | - |
1.4 | 700 | 0.1181 | - | - | - | - | - |
1.5 | 750 | - | 0.0737 | 0.0139 | 0.7983 | 0.6263 | 0.9847 |
1.6 | 800 | 0.1176 | - | - | - | - | - |
1.8 | 900 | 0.119 | - | - | - | - | - |
2.0 | 1000 | 0.1127 | 0.0682 | 0.0133 | 0.8121 | 0.6287 | 0.9852 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.12.9
- Sentence Transformers: 4.1.0
- Transformers: 4.52.4
- PyTorch: 2.7.0+cu126
- Accelerate: 1.7.0
- Datasets: 3.6.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
ContrastiveLoss
@inproceedings{hadsell2006dimensionality,
author={Hadsell, R. and Chopra, S. and LeCun, Y.},
booktitle={2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)},
title={Dimensionality Reduction by Learning an Invariant Mapping},
year={2006},
volume={2},
number={},
pages={1735-1742},
doi={10.1109/CVPR.2006.100}
}