manestay's picture
Add new SentenceTransformer model
f129648 verified
metadata
language:
  - en
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:200000
  - loss:MultipleNegativesRankingLoss
  - loss:ContrastiveLoss
base_model: BAAI/bge-base-en-v1.5
widget:
  - source_sentence: >-
      What is the best sushi restaurant in Los Angeles, aside from Urasawa which
      is impractical for regular visits?
    sentences:
      - How do I stop feeling sorry for ignorant and arrogant people?
      - What are the best sushi restaurants in Los Angeles?
      - Why do people flirt on Quora?
  - source_sentence: Why are many Quora writers lonely and/ or unemployed?
    sentences:
      - Are writers on Quora mostly lonely or have no job (unemployed)?
      - >-
        What are the attributes of monkeys belongs to Japanese-macaque monkey
        Family?
      - >-
        I want to change the education system in India. How can I have such
        power?
  - source_sentence: What is the best, and painless way to kill myself?
    sentences:
      - >-
        What is a way to commit suicide and not damaging your organs so that
        they can be donated?
      - How do I beat insomnia?
      - What is the most painless way to commit suicide?
  - source_sentence: What are ETF'S and what is the difference between ETF'S and mutual funds?
    sentences:
      - What is the difference between ETF and mutual funds?
      - What's better, an index ETF or an index mutual fund?
      - 'Income Tax: How to check pan card status?'
  - source_sentence: For what reasons can't the Olympics be held in India?
    sentences:
      - What are the best hotels to stay in Goa?
      - When will Olympics be held in India?
      - When will India qualify for the FIFA World Cup?
datasets:
  - sentence-transformers/quora-duplicates
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
  - cosine_accuracy
  - cosine_accuracy_threshold
  - cosine_f1
  - cosine_f1_threshold
  - cosine_precision
  - cosine_recall
  - cosine_ap
  - cosine_mcc
  - average_precision
  - f1
  - precision
  - recall
  - threshold
  - cosine_accuracy@1
  - cosine_accuracy@3
  - cosine_accuracy@5
  - cosine_accuracy@10
  - cosine_precision@1
  - cosine_precision@3
  - cosine_precision@5
  - cosine_precision@10
  - cosine_recall@1
  - cosine_recall@3
  - cosine_recall@5
  - cosine_recall@10
  - cosine_ndcg@10
  - cosine_mrr@10
  - cosine_map@100
model-index:
  - name: SentenceTransformer based on BAAI/bge-base-en-v1.5
    results:
      - task:
          type: binary-classification
          name: Binary Classification
        dataset:
          name: quora duplicates
          type: quora-duplicates
        metrics:
          - type: cosine_accuracy
            value: 0.833
            name: Cosine Accuracy
          - type: cosine_accuracy_threshold
            value: 0.8065301179885864
            name: Cosine Accuracy Threshold
          - type: cosine_f1
            value: 0.7630522088353413
            name: Cosine F1
          - type: cosine_f1_threshold
            value: 0.745335042476654
            name: Cosine F1 Threshold
          - type: cosine_precision
            value: 0.6705882352941176
            name: Cosine Precision
          - type: cosine_recall
            value: 0.8850931677018633
            name: Cosine Recall
          - type: cosine_ap
            value: 0.8120519897128382
            name: Cosine Ap
          - type: cosine_mcc
            value: 0.641402259734116
            name: Cosine Mcc
      - task:
          type: paraphrase-mining
          name: Paraphrase Mining
        dataset:
          name: quora duplicates dev
          type: quora-duplicates-dev
        metrics:
          - type: average_precision
            value: 0.6286866338232051
            name: Average Precision
          - type: f1
            value: 0.6032452480296708
            name: F1
          - type: precision
            value: 0.5627297495999654
            name: Precision
          - type: recall
            value: 0.6500474596592896
            name: Recall
          - type: threshold
            value: 0.7944510877132416
            name: Threshold
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: Unknown
          type: unknown
        metrics:
          - type: cosine_accuracy@1
            value: 0.9732
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.9944
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.9958
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.9994
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.9732
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.432
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.27652
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.14606
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.8392449568046333
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.9654790046130339
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.9826052435636259
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.9955256342023989
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.9852328208350886
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.983879365079365
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.9794253454223505
            name: Cosine Map@100

SentenceTransformer based on BAAI/bge-base-en-v1.5

This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5 on the mnrl and cl datasets. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: BAAI/bge-base-en-v1.5
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 dimensions
  • Similarity Function: Cosine Similarity
  • Training Datasets:
  • Language: en

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("manestay/bge-base-en-v1.5-mnrl-cl-multi")
# Run inference
sentences = [
    "For what reasons can't the Olympics be held in India?",
    'When will Olympics be held in India?',
    'When will India qualify for the FIFA World Cup?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Binary Classification

Metric Value
cosine_accuracy 0.833
cosine_accuracy_threshold 0.8065
cosine_f1 0.7631
cosine_f1_threshold 0.7453
cosine_precision 0.6706
cosine_recall 0.8851
cosine_ap 0.8121
cosine_mcc 0.6414

Paraphrase Mining

  • Dataset: quora-duplicates-dev
  • Evaluated with ParaphraseMiningEvaluator with these parameters:
    {'add_transitive_closure': <function ParaphraseMiningEvaluator.add_transitive_closure at 0x7f26a89802c0>, 'max_pairs': 500000, 'top_k': 100}
    
Metric Value
average_precision 0.6287
f1 0.6032
precision 0.5627
recall 0.65
threshold 0.7945

Information Retrieval

Metric Value
cosine_accuracy@1 0.9732
cosine_accuracy@3 0.9944
cosine_accuracy@5 0.9958
cosine_accuracy@10 0.9994
cosine_precision@1 0.9732
cosine_precision@3 0.432
cosine_precision@5 0.2765
cosine_precision@10 0.1461
cosine_recall@1 0.8392
cosine_recall@3 0.9655
cosine_recall@5 0.9826
cosine_recall@10 0.9955
cosine_ndcg@10 0.9852
cosine_mrr@10 0.9839
cosine_map@100 0.9794

Training Details

Training Datasets

mnrl

  • Dataset: mnrl at 451a485
  • Size: 100,000 training samples
  • Columns: anchor, positive, and negative
  • Approximate statistics based on the first 1000 samples:
    anchor positive negative
    type string string string
    details
    • min: 6 tokens
    • mean: 13.85 tokens
    • max: 42 tokens
    • min: 6 tokens
    • mean: 13.65 tokens
    • max: 44 tokens
    • min: 4 tokens
    • mean: 14.76 tokens
    • max: 64 tokens
  • Samples:
    anchor positive negative
    Why in India do we not have one on one political debate as in USA? Why cant we have a public debate between politicians in India like the one in US? Can people on Quora stop India Pakistan debate? We are sick and tired seeing this everyday in bulk?
    What is OnePlus One? How is oneplus one? Why is OnePlus One so good?
    Does our mind control our emotions? How do smart and successful people control their emotions? How can I control my positive emotions for the people whom I love but they don't care about me?
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

cl

  • Dataset: cl at 451a485
  • Size: 100,000 training samples
  • Columns: sentence1, sentence2, and label
  • Approximate statistics based on the first 1000 samples:
    sentence1 sentence2 label
    type string string int
    details
    • min: 6 tokens
    • mean: 15.3 tokens
    • max: 57 tokens
    • min: 6 tokens
    • mean: 15.66 tokens
    • max: 56 tokens
    • 0: ~62.00%
    • 1: ~38.00%
  • Samples:
    sentence1 sentence2 label
    What is the step by step guide to invest in share market in india? What is the step by step guide to invest in share market? 0
    What is the story of Kohinoor (Koh-i-Noor) Diamond? What would happen if the Indian government stole the Kohinoor (Koh-i-Noor) diamond back? 0
    How can I increase the speed of my internet connection while using a VPN? How can Internet speed be increased by hacking through DNS? 0
  • Loss: ContrastiveLoss with these parameters:
    {
        "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE",
        "margin": 0.5,
        "size_average": true
    }
    

Evaluation Datasets

mnrl

  • Dataset: mnrl at 451a485
  • Size: 1,000 evaluation samples
  • Columns: anchor, positive, and negative
  • Approximate statistics based on the first 1000 samples:
    anchor positive negative
    type string string string
    details
    • min: 7 tokens
    • mean: 13.84 tokens
    • max: 43 tokens
    • min: 6 tokens
    • mean: 13.8 tokens
    • max: 38 tokens
    • min: 6 tokens
    • mean: 14.71 tokens
    • max: 56 tokens
  • Samples:
    anchor positive negative
    Which programming language is best for developing low-end games? What coding language should I learn first for making games? I am entering the world of video game programming and want to know what language I should learn? Because there are so many languages ​​I do not know which one to start with. Can you recommend a language that's easy to learn and can be used with many platforms?
    Was it appropriate for Meryl Streep to use her Golden Globes speech to attack Donald Trump? Should Meryl Streep be using her position to attack the president? Why did Kelly Ann Conway say that Meryl Streep incited peoples worst feelings?
    Where can I found excellent commercial fridges in Sydney? Where can I found impressive range of commercial fridges in Sydney? What is the best grocery delivery service in Sydney?
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

cl

  • Dataset: cl at 451a485
  • Size: 1,000 evaluation samples
  • Columns: sentence1, sentence2, and label
  • Approximate statistics based on the first 1000 samples:
    sentence1 sentence2 label
    type string string int
    details
    • min: 5 tokens
    • mean: 15.59 tokens
    • max: 59 tokens
    • min: 6 tokens
    • mean: 15.65 tokens
    • max: 76 tokens
    • 0: ~63.40%
    • 1: ~36.60%
  • Samples:
    sentence1 sentence2 label
    What should I ask my friend to get from UK to India? What is the process of getting a surgical residency in UK after completing MBBS from India? 0
    How can I learn hacking for free? How can I learn to hack seriously? 1
    Which is the best website to learn programming language C++? Which is the best website to learn C++ Programming language for free? 0
  • Loss: ContrastiveLoss with these parameters:
    {
        "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE",
        "margin": 0.5,
        "size_average": true
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 400
  • per_device_eval_batch_size: 400
  • num_train_epochs: 100
  • warmup_ratio: 0.1
  • bf16: True
  • load_best_model_at_end: True
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 400
  • per_device_eval_batch_size: 400
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 100
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss mnrl loss cl loss quora-duplicates_cosine_ap quora-duplicates-dev_average_precision cosine_ndcg@10
0 0 - - - 0.7461 0.5988 0.9831
0.2 100 0.2804 - - - - -
0.4 200 0.2006 - - - - -
0.5 250 - 0.1153 0.0157 0.7661 0.6165 0.9839
0.6 300 0.1704 - - - - -
0.8 400 0.1459 - - - - -
1.0 500 0.1296 0.0835 0.0146 0.7860 0.6238 0.9843
1.2 600 0.1344 - - - - -
1.4 700 0.1181 - - - - -
1.5 750 - 0.0737 0.0139 0.7983 0.6263 0.9847
1.6 800 0.1176 - - - - -
1.8 900 0.119 - - - - -
2.0 1000 0.1127 0.0682 0.0133 0.8121 0.6287 0.9852
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.12.9
  • Sentence Transformers: 4.1.0
  • Transformers: 4.52.4
  • PyTorch: 2.7.0+cu126
  • Accelerate: 1.7.0
  • Datasets: 3.6.0
  • Tokenizers: 0.21.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}

ContrastiveLoss

@inproceedings{hadsell2006dimensionality,
    author={Hadsell, R. and Chopra, S. and LeCun, Y.},
    booktitle={2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)},
    title={Dimensionality Reduction by Learning an Invariant Mapping},
    year={2006},
    volume={2},
    number={},
    pages={1735-1742},
    doi={10.1109/CVPR.2006.100}
}