Built with Axolotl

See axolotl config

axolotl version: 0.4.1

\base_model: NousResearch/Meta-Llama-3-8B-Instruct
adapter: lora
base_model: HuggingFaceH4/tiny-random-LlamaForCausalLM
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - dd2d1d5c55dcf896_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/dd2d1d5c55dcf896_train_data.json
  type:
    field_input: Update
    field_instruction: Premise
    field_output: Hypothesis
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 256
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hub_model_id: mamung/a19502d3-1b45-4e6e-87e0-c075e15a136d
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.00015
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 5
lora_alpha: 128
lora_dropout: 0.1
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
- o_proj
- gate_proj
- down_proj
- up_proj
lr_scheduler: cosine
max_steps: 100
micro_batch_size: 8
mlflow_experiment_name: /tmp/dd2d1d5c55dcf896_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optim_args:
  adam_beta1: 0.9
  adam_beta2: 0.95
  adam_epsilon: 2.0e-05
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 2048
special_tokens:
  pad_token: </s>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.1
wandb_entity: eddysang
wandb_mode: online
wandb_name: fb37b6d9-8b9c-4d3f-90d8-d3c6e5bcce29
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: fb37b6d9-8b9c-4d3f-90d8-d3c6e5bcce29
warmup_steps: 20
weight_decay: 0.02
xformers_attention: false

a19502d3-1b45-4e6e-87e0-c075e15a136d

This model is a fine-tuned version of HuggingFaceH4/tiny-random-LlamaForCausalLM on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 10.2835

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.00015
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=2e-05
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 20
  • training_steps: 100

Training results

Training Loss Epoch Step Validation Loss
No log 0.0008 1 10.3964
10.3969 0.0075 9 10.3889
10.3778 0.0149 18 10.3598
10.3412 0.0224 27 10.3131
10.2976 0.0299 36 10.2960
10.2945 0.0373 45 10.2914
10.2904 0.0448 54 10.2892
10.2903 0.0522 63 10.2872
10.2821 0.0597 72 10.2855
10.2821 0.0672 81 10.2843
10.2853 0.0746 90 10.2836
10.2801 0.0821 99 10.2835

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
8
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and HF Inference API was unable to determine this model’s pipeline type.

Model tree for mamung/a19502d3-1b45-4e6e-87e0-c075e15a136d

Adapter
(241)
this model