Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: sethuiyer/Medichat-Llama3-8B
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - 302ba525ab517b5f_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/302ba525ab517b5f_train_data.json
  type:
    field_input: choices
    field_instruction: full_prompt
    field_output: example
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: false
hub_model_id: mamung/0ac290f1-fbef-4aec-8ee9-35143360c69c
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.1
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_steps: 10
micro_batch_size: 2
mlflow_experiment_name: /tmp/302ba525ab517b5f_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 2
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: eddysang
wandb_mode: online
wandb_name: 0ac290f1-fbef-4aec-8ee9-35143360c69c
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 0ac290f1-fbef-4aec-8ee9-35143360c69c
warmup_steps: 10
weight_decay: 0.01
xformers_attention: true

0ac290f1-fbef-4aec-8ee9-35143360c69c

This model is a fine-tuned version of sethuiyer/Medichat-Llama3-8B on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0035

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 10

Training results

Training Loss Epoch Step Validation Loss
1.0629 0.0336 1 1.0780
1.1444 0.0672 2 1.0696
1.0801 0.1008 3 1.0137
0.9959 0.1345 4 0.8593
0.8081 0.1681 5 0.6696
0.6099 0.2017 6 0.4186
0.4876 0.2353 7 0.1742
0.183 0.2689 8 0.0596
0.0562 0.3025 9 0.0141
0.0132 0.3361 10 0.0035

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
10
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and HF Inference API was unable to determine this model’s pipeline type.

Model tree for mamung/0ac290f1-fbef-4aec-8ee9-35143360c69c

Adapter
(240)
this model