Wav2vec2-xlsr-Shemo-Ravdess-4EMO

This model is a fine-tuned version of makhataei/Wav2vec2-xlsr-Shemo-Ravdess-4EMO on the minoosh/shEMO dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9089
  • Accuracy: 0.6712

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 35

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.9106 1.0 250 1.0288 0.6259
0.8205 2.0 500 0.9426 0.6576
0.7767 3.0 750 0.9707 0.6553
0.803 4.0 1000 0.9698 0.6644
0.7489 5.0 1250 0.9583 0.6463
0.7734 6.0 1500 0.9138 0.6757
0.7603 7.0 1750 0.8905 0.6712
0.7741 8.0 2000 0.9169 0.6599
0.7569 9.0 2250 0.9369 0.6417
0.7854 10.0 2500 0.9256 0.6599
0.7572 11.0 2750 0.9320 0.6621
0.7537 12.0 3000 0.8960 0.6825
0.745 13.0 3250 0.9495 0.6599
0.7598 14.0 3500 0.9196 0.6667
0.7536 15.0 3750 0.9464 0.6599
0.7428 16.0 4000 0.9407 0.6485
0.757 17.0 4250 0.9251 0.6689
0.7694 18.0 4500 0.9246 0.6576
0.7501 19.0 4750 0.9283 0.6621
0.7464 20.0 5000 0.9333 0.6531
0.7569 21.0 5250 0.9062 0.6667
0.745 22.0 5500 0.9569 0.6485
0.7404 23.0 5750 0.9062 0.6667
0.7384 24.0 6000 0.8948 0.6780
0.7524 25.0 6250 0.9296 0.6599
0.7574 26.0 6500 0.8925 0.6825
0.7876 27.0 6750 0.9061 0.6712
0.7692 28.0 7000 0.9319 0.6508
0.7352 29.0 7250 0.9145 0.6644
0.7496 30.0 7500 0.9068 0.6735
0.7406 31.0 7750 0.9024 0.6735
0.7334 32.0 8000 0.9231 0.6576
0.761 33.0 8250 0.9073 0.6712
0.7476 34.0 8500 0.9097 0.6667
0.7868 35.0 8750 0.9089 0.6712

Framework versions

  • Transformers 4.29.2
  • Pytorch 2.0.1+cu117
  • Datasets 2.12.0
  • Tokenizers 0.13.3
Downloads last month
125
Inference API
Unable to determine this model’s pipeline type. Check the docs .