maiduchuy321's picture
Add new SentenceTransformer model.
81a86fc verified
|
raw
history blame
53.1 kB
metadata
language:
  - vn
license: apache-2.0
library_name: sentence-transformers
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:11711
  - loss:MatryoshkaLoss
  - loss:MultipleNegativesRankingLoss
base_model: bkai-foundation-models/vietnamese-bi-encoder
datasets: []
metrics:
  - cosine_accuracy@1
  - cosine_accuracy@3
  - cosine_accuracy@5
  - cosine_accuracy@10
  - cosine_precision@1
  - cosine_precision@3
  - cosine_precision@5
  - cosine_precision@10
  - cosine_recall@1
  - cosine_recall@3
  - cosine_recall@5
  - cosine_recall@10
  - cosine_ndcg@10
  - cosine_mrr@10
  - cosine_map@100
widget:
  - source_sentence: Số điện thoại đường dây nóng UBND huyện
    sentences:
      - >-
        Theo quy định tại Nghị định số 31/2013/NĐ-CP và Thông tư số
        05/2013/TT-BLĐTBXH thì bệnh binh nếu mắc thêm bệnh do chất độc hóa học
        thì được giám định tổng họp để hưởng trợ cấp bệnh binh (không hưởng chế
        độ người hoạt động kháng chiến bị nhiễm chất độc hóa học). Tuy nhiên quy
        định này chỉ áp dụng đối với trường hợp lập hồ sơ từ ngày 01/6/2013 trở
        về sau. Đối với người đang hưởng 2 chế độ trước 01/6/2013 thì sau ngày
        31/12/2013 chuyển sang hưởng trợ cấp đối với bệnh binh và trợ cấp đối
        với người hoạt động kháng chiến bị nhiễm chất độc hóa học suy giảm khả
        năng lao động từ 41-60% (mức 3 mới).
      - >-
        Theo quy định tại Khoản 1 Điều 6 Mục 1 Chương II Thông tư số
        04/2016/TT-NHNN ngày 15/4/2016 quy định về việc lưu ký và sử dụng giấy
        tờ có giá tại NHNN, hồ sơ mở tài khoản lưu ký giấy tờ có giá gồm:(i)
        Giấy đề nghị mở tài khoản lưu ký giấy tờ có giá theo phụ lục 1a/LK đính
        kèm Thông tư này;(ii) Bản đăng ký mẫu dấu, chữ ký theo Phụ lục 1b/LK
        đính kèm Thông tư này;(iii) Các giấy tờ chứng minh việc tổ chức mở tài
        khoản lưu ký giấy tờ có giá thành lập và hoạt động hợp pháp như: Quyết
        định thành lập, giấy phép hoạt động, giấy chứng nhận đăng ký doanh
        nghiệp hoặc các giấy tờ khác theo quy định của pháp luật;(iv) Các giấy
        tờ chứng minh tư cách đại diện hợp pháp của người đại diện của chủ tài
        khoản kèm giấy chứng minh nhân dân hoặc thẻ căn cước công dân hoặc hộ
        chiếu còn thời hạn của người đó;(v) Trường hợp tổ chức mở tài khoản lưu
        ký thuộc đối tượng bắt buộc phải có chữ ký Kế toán trưởng hoặc người phụ
        trách kế toán trên chứng từ kế toán giao dịch với ngân hàng theo quy
        định của pháp luật thì ngoài các giấy tờ nêu tại điểm 1, 2, 3, 4 nêu
        trên, hồ sơ mở tài khoản lưu ký giấy tờ có giá phải có quyết định bổ
        nhiệm kèm giấy chứng minh nhân dân hoặc thẻ căn cước công dân hoặc hộ
        chiếu còn thời hạn của kế toán trưởng (hoặc người phụ trách kế toán) của
        tổ chức mở tài khoản lưu ký giấy tờ có giá.* Các giấy tờ quy định tại
        điểm 1,2 là bản chính, các giấy tờ quy định tại điểm 3, 4, 5 là bản sao
        được cấp từ sổ gốc hoặc bản sao có chứng thực hoặc bản sao kèm xuất
        trình bản chính để đối chiếu.
      - Khách hàng gọi đến số điện thoại đường dây nóng 1022
  - source_sentence: >-
      Thủ tục: Thủ tục Điều chỉnh giấy phép thành lập Văn phòng đại diện của
      thương nhân nước ngoài tại Việt Nam bao gồm hồ sơ gì ? 
    sentences:
      - "a) Đơn đề nghị điều chỉnh Giấy phép thành lập Văn phòng đại diện theo mẫu của Bộ Công Thương do đại diện có thẩm quyền của thương nhân nước ngoài ký;\nb) Các tài liệu chứng minh về nội dung thay đổi, cụ thể:\n- Trường hợp điều chỉnh Giấy phép do thay đổi tên gọi hoặc địa chỉ đặt trụ sở của thương nhân nước ngoài: Bản sao tài liệu pháp lý do cơ quan có thẩm quyền cấp chứng minh sự thay đổi tên gọi hoặc địa chỉ đặt trụ sở của thương nhân nước ngoài.\n- Trường hợp điều chỉnh Giấy phép do thay đổi người đứng đầu của Văn phòng đại diện: Văn bản của thương nhân nước ngoài cử/bổ nhiệm người đứng đầu mới của Văn phòng đại diện; Bản sao hộ chiếu hoặc giấy chứng minh nhân dân hoặc thẻ căn cước công dân (nếu là người Việt Nam) hoặc bản sao hộ chiếu (nếu là người nước ngoài) của người đứng đầu mới của Văn phòng đại diện; Giấy tờ chứng minh người đứng đầu cũ của Văn phòng đại diện đã thực hiện nghĩa vụ thuế thu nhập cá nhân đến thời điểm thay đổi.\n\_- Trường hợp điều chỉnh Giấy phép do thay đổi địa chỉ đặt trụ sở của Văn phòng đại diện trong một tỉnh, thành phố trực thuộc Trung ương hoặc trong khu vực địa lý thuộc phạm vi quản lý của một Ban Quản lý: Bản sao biên bản ghi nhớ hoặc thỏa thuận thuê địa điểm hoặc bản sao tài liệu chứng minh thương nhân có quyền khai thác, sử dụng địa điểm để đặt trụ sở Văn phòng đại điện; Bản sao tài liệu về địa điểm dự kiến đặt trụ sở Văn phòng đại diện theo quy định tại Điều 28 Nghị định 07/2016/NĐ-CP ngày 25/01/2016 của Chính phủ và quy định pháp luật có liên quan.\nc) Bản chính Giấy phép thành lập Văn phòng đại diện."
      - "\_Bạn phải làm thủ tục \"cấp sửa đổi, bổ sung Giấy phép hoạt động tư vấn chuyên ngành điện thuộc thẩm quyền cấp của địa phương\" theo quy định tại Nghị định số\_137/2013/NĐ-CP\_ngày 21/10/2013 của Chính phủ, Nghị định số 08/2018/NĐ-CP ngày 15/01/2018 sửa đổi, bổ sung một số Nghị định liên quan đến điều kiện đầu tư kinh doanh thuộc phạm vi quản lý nhà nước của Bộ Công Thương; Thông tư số\_36/2018/TT-BCT\_ngày 16/10/2018 của Bộ Trưởng Bộ Công Thương.\n- Thành phần hồ sơ và các biểu mẫu: Được công khai tại Trung tâm Phục vụ hành chính công tỉnh và Website: dichvucong.quangninh.gov.vn.- Hình thức nộp hồ sơ: Bạn có thể lựa chọn một trong bốn hình thức: (1) Nộp trực tiếp ở Quầy Sở Công Thương tại Trung tâm phục vụ Hành chính công tỉnh; (2). Nộp qua dịch vụ Bưu chính công ích; (3). Nộp qua bưu điện (đơn vị làm dịch vụ bưu phát); (4). Nộp trực tuyến (qua mạng) tại Website: dichvucong.quangninh.gov.vn.- Trong quá trình thực hiện, đơn vị cần trao đổi hoặc cần hỗ trợ đề nghị liên lạc (trong giờ hành chính) theo số điện thoại: 0203.3.634.669 hoặc 1900.558.826, máy lẻ (Sở Công Thương: 221; 222) hoặc Email: [email protected] để được hướng dẫn, trao đổi."
      - >-
        Đối tượng được xét tuyển vào trường dự bị đại học phải đáp ứng các điều
        kiện sau đây:a) Đối tượng được xét tuyển Thí sinh thuộc đối tượng 01 của
        nhóm ưu tiên 1(ƯT1) và khu vực 1(KV1) quy định tại Quy chế tuyển sinh
        đại học, cao đẳng hệ chính quy hiện hành;b) Đối tượng được tuyển thẳng:
        Thí sinh người dân tộc thiểu số rất ít người (theo quy định của Chính
        phủ) đã tốt nghiệp
  - source_sentence: >-
      Thời hạn giải quyết thủ tục cấp lại chứng chỉ hành nghề dược đối với
      trường hợp bị mất của công dân Việt Nam, người nước ngoài, 

       người Việt Nam định   nước ngoài theo hình thức xét duyệt hồ sơ?
    sentences:
      - 05 ngày làm việc kể từ ngày nhận đủ hồ  hợp lệ.
      - >-
        Căn cứ Điều 18 Thông tư Số 66/2014/TT-BCA ngày 16/12/2014 của Bộ Công an
        quy định Phương tiện PCCC được kiểm định chủng loại, mẫu mã và thông số
        kỹ thuật của phương tiện, kết quả kiểm định được đánh giá và lập biên
        bản theo mẫu PC18, nếu đạt kết quả sẽ được cấp giấy chứng nhận kiểm định
        theo mẫu PC19. Như vậy, biên bản kiểm định được lập làm căn cứ để cấp
        giấy chứng nhận kiểm định cho lô phương tiện PCCC khi đạt kết quả. Như
        vậy, đơn vị đề nghị kiểm định chỉ nhận được Giấy chứng nhận kiểm định
        phương tiện PCCC nếu lô phương tiện đảm bảo các yêu cầu theo quy định.
      - Không 
  - source_sentence: Hồ  thông báo tập trung kinh tế gồm những giấy tờ gì?
    sentences:
      - >-
        Theo Khoản 2, Điều 7 Thông tư 25/2013/TT-NHNN: Từ 03 ngày làm việc đến
        15 ngày làm việc
      - >-
        Trình tự thực hiện Nộp hồ sơ TTHC

        - Trường hợp nộp trực tiếp: Tổ chức,  nhân nộp hồ  trực tiếp cho Sở
        Văn hoá, Thể thao  Du lịch tại Trung tâm Phục vụ hành chính công tỉnh.

        - Trường hợp gửi qua Dịch vụ Bưu chính: Tổ chức,  nhân gửi hồ  qua
        dịch vụ Bưu chính, nhân viên Bưu chính nộp hồ  trực tiếp cho Sở Văn
        hoá, Thể thao  Du lịch tại Trung tâm Phục vục hành chính công tỉnh.

        - Qua Dịch vụ công trực tuyến toàn trình: Tổ chức,  nhân đăng ký/đăng
        nhập tài khoản, xác thực định danh điện tử  thực hiện quy trình nộp hồ
         trực tuyến trên Cổng dịch vụ công quốc gia (http://dichvucong.gov.vn)
         Hệ thống thông tin giải quyết TTHC tỉnh (dichvucong.hagiang.gov.vn)
        theo hướng dẫn.
      - >-
        Theo Điều 34 Luật Cạnh tranh 2018, hồ sơ thông báo tập trung kinh tế bao
        gồm:Thông báo tập trung kinh tế theo mẫu do Ủy ban Cạnh tranh Quốc gia
        ban hành;Dự thảo nội dung thỏa thuận tập trung kinh tế hoặc dự
        thảo hợp đồng, biên bản ghi nhớ việc tập trung kinh tế giữa các doanh
        nghiệp;Bản sao hợp lệ Giấy chứng nhận đăng ký doanh nghiệp hoặc văn bản
        tương đương của từng doanh nghiệp tham gia tập trung kinh tế;Báo cáo tài
        chính của từng doanh nghiệp tham gia tập trung kinh tế trong 02 năm liên
        tiếp liền kề trước năm thông báo tập trung kinh tế hoặc báo cáo tài
        chính từ thời điểm thành lập đến thời điểm thông báo tập trung kinh tế
        đối với doanh nghiệp mới thành lập có xác nhận của tổ chức kiểm toán
        theo quy định của pháp luật; Danh sách các công ty mẹ, công ty con, công
        ty thành viên, chi nhánh, văn phòng đại diện và các đơn vị phụ thuộc
        khác của từng doanh nghiệp tham gia tập trung kinh tế (nếu có);Danh sách
        các loại hàng hóa, dịch vụ mà từng doanh nghiệp tham gia tập trung kinh
        tế đang kinh doanh;Thông tin về thị phần trong lĩnh vực dự định tập
        trung kinh tế của từng doanh nghiệp tham gia tập trung kinh tế trong 02
        năm liên tiếp liền kề trước năm thông báo tập trung kinh tế;Phương án
        khắc phục khả năng gây tác động hạn chế cạnh tranh của việc tập trung
        kinh tế;Báo cáo đánh giá tác động tích cực của việc tập trung kinh tế và
        các biện pháp tăng cường tác động tích cực của việc tập trung kinh
        tế.Ngoài ra, doanh nghiệp nộp hồ sơ thông báo tập trung kinh tế chịu
        trách nhiệm về tính trung thực của hồ sơ. Tài liệu trong hồ sơ bằng
        tiếng nước ngoài thì phải kèm theo bản dịch tiếng Việt.
  - source_sentence: >-
      Thời gian giải quyết thủ tục hành chính đối với 01 bộ hồ sơ quảng cáo thực
      phẩm?
    sentences:
      - >-
        Căn cứ pháp lý: Điều 48, Nghị định số 59/2015/NĐ-CP ngày 18/6/2015;
        Khoản 2, Điều 21, Nghị định số 46/2015/NĐ-CP ngày 12/5/2015. 1. Các Chức
        danh, gồm:- Trong khung tên từng bản vẽ phải có tên, chữ ký của người
        trực tiếp thiết kế, người kiểm tra thiết kế, chủ trì thiết kế, chủ nhiệm
        thiết kế, người đại diện theo pháp luật của nhà thầu thiết kế; và người
        quản lý kỹ thuật nội bộ.- Trong tập dự toán phải có tên của người lập,
        chủ trì lập dự toán và người đại diện theo pháp luật của nhà thầu lập dự
        toán;2. Chứng chỉ hoạt động xây dựng yêu cầu đối với chủ trì thiết kế,
        chủ nhiệm thiết kế và chủ trì lập dự toán.
      - >-
        Theo quy định tại khoản 5 Điều 27 Nghị định 15/2018/NĐ-CP: Trong thời
        hạn 10 ngày làm việc, kể từ ngày nhận đủ hồ sơ hợp lệ, cơ quan tiếp nhận
        hồ sơ có trách nhiệm xem xét hồ sơ và trả kết quả theo Mẫu số 11 Phụ lục
        I ban hành kèm theo Nghị định 15/2018/NĐ-CP. Thời hạn này được tính từ
        ngày đóng dấu đến của cơ quan tiếp nhận hồ sơ nếu hồ sơ được gửi qua
        đường bưu điện hoặc ngày hồ sơ hoàn chỉnh được tiếp nhận trên hệ thống
        dịch vụ công trực tuyến.Trong trường hợp không đồng ý với nội dung quảng
        cáo của tổ chức, cá nhân hoặc yêu cầu sửa đổi, bổ sung, cơ quan tiếp
        nhận hồ sơ phải có văn bản nêu rõ lý do và căn cứ pháp lý của việc yêu
        cầu. Trong thời hạn 10 ngày làm việc kể từ khi nhận hồ sơ sửa đổi, bổ
        sung, cơ quan tiếp nhận hồ sơ thẩm định hồ sơ và có văn bản trả lời. Sau
        90 ngày làm việc kể từ khi có công văn yêu cầu sửa đổi, bổ sung nếu tổ
        chức, cá nhân không sửa đổi, bổ sung thì hồ sơ không còn giá trị.
      - >-
        Ngoài các hồ sơ, tài liệu gửi 1 lần và gửi hàng năm theo chế độ quy
        định, chủ đầu tư gửi KBNN các hồ sơ, tài liệu có liên quan theo quy định
        tại tiết 1.5.1, mục 1.5, và 1.5.1, mục 1.6, điểm 1, phần II, Thông tư số
        113/2008/TT-BTC ngày 27/11/2008 của BTC cụ thể: Hồ sơ cam kết chi thường
        xuyên:- Hợp đồng mua bán hàng hoá, dịch vụ có giá trị từ 100 triệu đồng
        trở lên (gửi lần đầu hoặc khi có điều chỉnh hợp đồng);- Đề nghị cam kết
        chi hoặc đề nghị điều chỉnh cam kết chi.Hồ sơ cam kết chi đầu tư: - Hợp
        đồng có giá trị từ 500 triệu đồng trở lên (gửi lần đầu khi đề nghị cam
        kết chi hoặc gửi khi có điều chỉnh hợp đồng);- Đề nghị cam kết chi hoặc
        đề nghị điều chỉnh cam kết chi.
pipeline_tag: sentence-similarity
model-index:
  - name: vietnamese-bi-encoder-fine-tuning-for-law-chatbot
    results:
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 768
          type: dim_768
        metrics:
          - type: cosine_accuracy@1
            value: 0.5192012288786483
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.7035330261136713
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.7703533026113671
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.8433179723502304
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.5192012288786483
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.23451100870455707
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.15407066052227342
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.08433179723502303
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.5192012288786483
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.7035330261136713
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.7703533026113671
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.8433179723502304
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.6784984111685612
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.6260898983249218
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.6315228861090326
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 512
          type: dim_512
        metrics:
          - type: cosine_accuracy@1
            value: 0.5099846390168971
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.705837173579109
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.7642089093701997
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.8402457757296466
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.5099846390168971
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.23527905785970302
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.15284178187403993
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.08402457757296465
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.5099846390168971
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.705837173579109
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.7642089093701997
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.8402457757296466
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.6730215261533721
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.6197422158827693
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.625183882393767
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 256
          type: dim_256
        metrics:
          - type: cosine_accuracy@1
            value: 0.5023041474654378
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.695084485407066
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.7634408602150538
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.8348694316436251
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.5023041474654378
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.23169482846902198
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.15268817204301074
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.0834869431643625
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.5023041474654378
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.695084485407066
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.7634408602150538
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.8348694316436251
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.6662572650809209
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.6124750079243174
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.6181528055332479
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 128
          type: dim_128
        metrics:
          - type: cosine_accuracy@1
            value: 0.4838709677419355
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.6674347158218126
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.7480798771121352
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.8210445468509985
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.4838709677419355
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.22247823860727084
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.14961597542242702
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.08210445468509983
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.4838709677419355
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.6674347158218126
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.7480798771121352
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.8210445468509985
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.6486762179767267
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.5938781605832305
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.6001217679704338
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 64
          type: dim_64
        metrics:
          - type: cosine_accuracy@1
            value: 0.44623655913978494
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.6382488479262672
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.7158218125960062
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.7987711213517665
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.44623655913978494
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.21274961597542244
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.1431643625192012
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.07987711213517665
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.44623655913978494
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.6382488479262672
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.7158218125960062
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.7987711213517665
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.6178085159779514
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.5604372394118942
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.5666545014535384
            name: Cosine Map@100

vietnamese-bi-encoder-fine-tuning-for-law-chatbot

This is a sentence-transformers model finetuned from bkai-foundation-models/vietnamese-bi-encoder. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: bkai-foundation-models/vietnamese-bi-encoder
  • Maximum Sequence Length: 256 tokens
  • Output Dimensionality: 768 tokens
  • Similarity Function: Cosine Similarity
  • Language: vn
  • License: apache-2.0

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: RobertaModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("maiduchuy321/vietnamese-bi-encoder-fine-tuning-for-law-chatbot")
# Run inference
sentences = [
    'Thời gian giải quyết thủ tục hành chính đối với 01 bộ hồ sơ quảng cáo thực phẩm?',
    'Theo quy định tại khoản 5 Điều 27 Nghị định 15/2018/NĐ-CP: Trong thời hạn 10 ngày làm việc, kể từ ngày nhận đủ hồ sơ hợp lệ, cơ quan tiếp nhận hồ sơ có trách nhiệm xem xét hồ sơ và trả kết quả theo Mẫu số 11 Phụ lục I ban hành kèm theo Nghị định 15/2018/NĐ-CP. Thời hạn này được tính từ ngày đóng dấu đến của cơ quan tiếp nhận hồ sơ nếu hồ sơ được gửi qua đường bưu điện hoặc ngày hồ sơ hoàn chỉnh được tiếp nhận trên hệ thống dịch vụ công trực tuyến.Trong trường hợp không đồng ý với nội dung quảng cáo của tổ chức, cá nhân hoặc yêu cầu sửa đổi, bổ sung, cơ quan tiếp nhận hồ sơ phải có văn bản nêu rõ lý do và căn cứ pháp lý của việc yêu cầu. Trong thời hạn 10 ngày làm việc kể từ khi nhận hồ sơ sửa đổi, bổ sung, cơ quan tiếp nhận hồ sơ thẩm định hồ sơ và có văn bản trả lời. Sau 90 ngày làm việc kể từ khi có công văn yêu cầu sửa đổi, bổ sung nếu tổ chức, cá nhân không sửa đổi, bổ sung thì hồ sơ không còn giá trị.',
    'Ngoài các hồ sơ, tài liệu gửi 1 lần và gửi hàng năm theo chế độ quy định, chủ đầu tư gửi KBNN các hồ sơ, tài liệu có liên quan theo quy định tại tiết 1.5.1, mục 1.5, và 1.5.1, mục 1.6, điểm 1, phần II, Thông tư số 113/2008/TT-BTC ngày 27/11/2008 của BTC cụ thể: Hồ sơ cam kết chi thường xuyên:- Hợp đồng mua bán hàng hoá, dịch vụ có giá trị từ 100 triệu đồng trở lên (gửi lần đầu hoặc khi có điều chỉnh hợp đồng);- Đề nghị cam kết chi hoặc đề nghị điều chỉnh cam kết chi.Hồ sơ cam kết chi đầu tư: - Hợp đồng có giá trị từ 500 triệu đồng trở lên (gửi lần đầu khi đề nghị cam kết chi hoặc gửi khi có điều chỉnh hợp đồng);- Đề nghị cam kết chi hoặc đề nghị điều chỉnh cam kết chi.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.5192
cosine_accuracy@3 0.7035
cosine_accuracy@5 0.7704
cosine_accuracy@10 0.8433
cosine_precision@1 0.5192
cosine_precision@3 0.2345
cosine_precision@5 0.1541
cosine_precision@10 0.0843
cosine_recall@1 0.5192
cosine_recall@3 0.7035
cosine_recall@5 0.7704
cosine_recall@10 0.8433
cosine_ndcg@10 0.6785
cosine_mrr@10 0.6261
cosine_map@100 0.6315

Information Retrieval

Metric Value
cosine_accuracy@1 0.51
cosine_accuracy@3 0.7058
cosine_accuracy@5 0.7642
cosine_accuracy@10 0.8402
cosine_precision@1 0.51
cosine_precision@3 0.2353
cosine_precision@5 0.1528
cosine_precision@10 0.084
cosine_recall@1 0.51
cosine_recall@3 0.7058
cosine_recall@5 0.7642
cosine_recall@10 0.8402
cosine_ndcg@10 0.673
cosine_mrr@10 0.6197
cosine_map@100 0.6252

Information Retrieval

Metric Value
cosine_accuracy@1 0.5023
cosine_accuracy@3 0.6951
cosine_accuracy@5 0.7634
cosine_accuracy@10 0.8349
cosine_precision@1 0.5023
cosine_precision@3 0.2317
cosine_precision@5 0.1527
cosine_precision@10 0.0835
cosine_recall@1 0.5023
cosine_recall@3 0.6951
cosine_recall@5 0.7634
cosine_recall@10 0.8349
cosine_ndcg@10 0.6663
cosine_mrr@10 0.6125
cosine_map@100 0.6182

Information Retrieval

Metric Value
cosine_accuracy@1 0.4839
cosine_accuracy@3 0.6674
cosine_accuracy@5 0.7481
cosine_accuracy@10 0.821
cosine_precision@1 0.4839
cosine_precision@3 0.2225
cosine_precision@5 0.1496
cosine_precision@10 0.0821
cosine_recall@1 0.4839
cosine_recall@3 0.6674
cosine_recall@5 0.7481
cosine_recall@10 0.821
cosine_ndcg@10 0.6487
cosine_mrr@10 0.5939
cosine_map@100 0.6001

Information Retrieval

Metric Value
cosine_accuracy@1 0.4462
cosine_accuracy@3 0.6382
cosine_accuracy@5 0.7158
cosine_accuracy@10 0.7988
cosine_precision@1 0.4462
cosine_precision@3 0.2127
cosine_precision@5 0.1432
cosine_precision@10 0.0799
cosine_recall@1 0.4462
cosine_recall@3 0.6382
cosine_recall@5 0.7158
cosine_recall@10 0.7988
cosine_ndcg@10 0.6178
cosine_mrr@10 0.5604
cosine_map@100 0.5667

Training Details

Training Dataset

Unnamed Dataset

  • Size: 11,711 training samples
  • Columns: Câu hỏi and Câu trả lời
  • Approximate statistics based on the first 1000 samples:
    Câu hỏi Câu trả lời
    type string string
    details
    • min: 6 tokens
    • mean: 38.26 tokens
    • max: 256 tokens
    • min: 4 tokens
    • mean: 143.99 tokens
    • max: 256 tokens
  • Samples:
    Câu hỏi Câu trả lời
    Phòng thử nghiệm của tổ chức, doanh nghiệp chỉ thực hiện hoạt động thử nghiệm phục vụ kiểm soát chất lượng sản phẩm do chính tổ chức, doanh nghiệp sản xuất ra thì có phải thực hiện đăng ký hoạt động thử nghiệm theo Nghị định số 107/2016/NĐ-CP không? Tại khoản 1 Điều 2 Nghị định số 107/2016/NĐ-CP quy định Nghị định này áp dụng đối với các tổ chức, doanh nghiệp có hoạt động kinh doanh dịch vụ đánh giá sự phù hợp (thử nghiệm, chứng nhận, giám định, kiểm định) trên lãnh thổ Việt Nam. Do đó, trong trường hợp này, tổ chức, doanh nghiệp không phải thực hiện đăng ký hoạt động thử nghiệm theo quy định tại Nghị định số 107/2016/NĐ-CP. Trường hợp, tổ chức, doanh nghiệp có nhu cầu cung cấp dịch vụ thử nghiệm thì phải thực hiện đăng ký hoạt động thử nghiệm theo quy định tại Nghị định số 107/2016/NĐ-CP.
    Sửa đổi, bổ sung Giấy chứng nhận đủ điều kiện hoạt động điểm cung cấp dịch vụ trò chơi điện tử công cộng trong trường hợp nào?; cách thức thực hiện như thế nào; thời gian thực thực hiện trong bao lâu? Sửa đổi, bổ sung trong thời hạn hiệu lực của Giấy chứng nhận đủ điều kiện hoạt động điểm cung cấp dịch vụ trò chơi điện tử công cộng, chủ điểm cung cấp dịch vụ trò chơi điện tử công cộng phải làm thủ tục sửa đổi, bổ sung giấy chứng nhận đủ điều kiện hoạt động điểm cung cấp dịch vụ trò chơi điện tử công cộng đã được cấp thuộc một trong các trường hợp sau đây: Thay đổi tên điểm cung cấp dịch vụ trò chơi điện tử công cộng; Thay đổi chủ điểm cung cấp dịch vụ trò chơi điện tử công cộng đối với trường hợp chủ điểm là cá nhân hoặc thay đổi người quản lý trực tiếp điểm cung cấp dịch vụ trò chơi điện tử công cộng đối với trường hợp chủ điểm là tổ chức, doanh nghiệp; Cách thức thực hiện: cá nhân có thể gửi hồ sơ trực tiếp hoặc gửi trực tuyến qua cổng dịch vụ công tỉnh Hà Giang; Thời gian thực hiện trong 05 ngày làm việc, kể từ ngày nhận đủ hồ sơ hợp lệ.
    Đối với trường hợp đại lý đã được cấp trước đây có được phép hoạt động đến hết thời hạn trong Giấy chứng nhận đủ điều kiện kinh doanh dược không? Hay hướng dẫn các đại lý chuyển đổi qua quầy thuốc ngay khi Nghị định 54/2017/NĐ-CP ngày 08/5/2017 của Chính phủ có hiệu lực? Theo quy định của Luật Dược 2016 không còn loại hình bán lẻ thuốc là đại lý thuốc. Khoản 1 Điều 115 Luật dược quy định về điều khoản chuyển tiếp, theo đó:“Cơ sở kinh doanh dược đã được cấp Giấy chứng nhận đủ điều kiện kinh doanh dượctheo quy định của Luật dược 34/2005/QH11 được tiếp tục kinh doanh thuốc cho đếnhết thời hạn hiệu lực của Giấy chứng nhận đủ điều kiện kinh doanh dược”. Nhưvậy, các đại lý bán lẻ thuốc đã được cấp Giấy chứng nhận đủ điều kiện kinhdoanh dược được phép hoạt động đến hết thời hạn ghi trên Giấy chứng nhận đủđiều kiện kinh doanh dược. Việc các đại lý muốn chuyển đổi thành quầy thuốc thìphải đáp ứng các quy định về điều kiện và địa bàn hoạt động đối với quầy thuốc
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "matryoshka_dims": [
            768,
            512,
            256,
            128,
            64
        ],
        "matryoshka_weights": [
            1,
            1,
            1,
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 16
  • gradient_accumulation_steps: 32
  • learning_rate: 2e-05
  • num_train_epochs: 15
  • lr_scheduler_type: cosine
  • warmup_ratio: 0.1
  • fp16: True
  • tf32: False
  • load_best_model_at_end: True
  • optim: adamw_torch_fused
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 32
  • eval_accumulation_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 15
  • max_steps: -1
  • lr_scheduler_type: cosine
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: False
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch_fused
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss dim_128_cosine_map@100 dim_256_cosine_map@100 dim_512_cosine_map@100 dim_64_cosine_map@100 dim_768_cosine_map@100
0.8743 10 3.9132 - - - - -
0.9617 11 - 0.4759 0.5066 0.5205 0.4333 0.5227
1.7486 20 2.3057 - - - - -
1.9235 22 - 0.5345 0.5541 0.5686 0.4968 0.5756
2.6230 30 1.3986 - - - - -
2.9727 34 - 0.5586 0.5826 0.5958 0.5223 0.5979
3.4973 40 0.954 - - - - -
3.9344 45 - 0.5739 0.5948 0.6079 0.5370 0.6066
4.3716 50 0.6417 - - - - -
4.9836 57 - 0.5865 0.6066 0.6135 0.5488 0.6152
5.2459 60 0.4711 - - - - -
5.9454 68 - 0.5898 0.6140 0.6170 0.5572 0.6196
6.1202 70 0.3451 - - - - -
6.9945 80 0.2679 0.5957 0.6118 0.6212 0.5627 0.6210
7.8689 90 0.2066 - - - - -
7.9563 91 - 0.5973 0.6140 0.6253 0.5643 0.6268
8.7432 100 0.1844 - - - - -
8.9180 102 - 0.5971 0.6189 0.6271 0.5621 0.6281
9.6175 110 0.1604 - - - - -
9.9672 114 - 0.5993 0.6190 0.6273 0.5646 0.6307
10.4918 120 0.1507 - - - - -
10.9290 125 - 0.5976 0.6181 0.6258 0.5668 0.6305
11.3661 130 0.1307 - - - - -
11.9781 137 - 0.5990 0.6166 0.6251 0.5671 0.6318
12.2404 140 0.1275 - - - - -
12.9399 148 - 0.6002 0.6174 0.6259 0.5665 0.6314
13.1148 150 0.1204 - - - - -
13.9891 160 0.1227 0.6004 0.6176 0.6253 0.5668 0.6316
14.4262 165 - 0.6001 0.6182 0.6252 0.5667 0.6315
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.10.13
  • Sentence Transformers: 3.0.1
  • Transformers: 4.41.2
  • PyTorch: 2.1.2
  • Accelerate: 0.30.1
  • Datasets: 2.19.1
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning}, 
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}