SentenceTransformer based on BAAI/bge-small-en-v1.5
This is a sentence-transformers model finetuned from BAAI/bge-small-en-v1.5. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-small-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 384 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the ๐ค Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'how has my portfolio performed since inception',
'[{"get_portfolio([\'quantity\', \'averageCost\', \'marketValue\'],True,None)": "portfolio"}, {"calculate(\'portfolio\',[\'quantity\', \'averageCost\'],\'multiply\',\'cost_basis\')": "portfolio"}, {"calculate(\'portfolio\',[\'marketValue\', \'cost_basis\'],\'difference\',\'profit\')": "profit_port"}, {"aggregate(\'portfolio\',\'ticker\',\'profit\',\'sum\',None)": "profit_port"}]',
'[{"get_portfolio(None,True,None)": "portfolio"}, {"factor_contribution(\'portfolio\',\'<DATES>\',\'sector\',\'sector information technology\',\'portfolio\')": "portfolio"}]',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.6656 |
cosine_accuracy@3 | 0.9164 |
cosine_accuracy@5 | 0.9565 |
cosine_accuracy@10 | 0.9799 |
cosine_precision@1 | 0.6656 |
cosine_precision@3 | 0.3055 |
cosine_precision@5 | 0.1913 |
cosine_precision@10 | 0.098 |
cosine_recall@1 | 0.0185 |
cosine_recall@3 | 0.0255 |
cosine_recall@5 | 0.0266 |
cosine_recall@10 | 0.0272 |
cosine_ndcg@10 | 0.1839 |
cosine_mrr@10 | 0.7871 |
cosine_map@100 | 0.0219 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 978 training samples
- Columns:
sentence_0
andsentence_1
- Approximate statistics based on the first 978 samples:
sentence_0 sentence_1 type string string details - min: 4 tokens
- mean: 13.54 tokens
- max: 27 tokens
- min: 20 tokens
- mean: 87.0 tokens
- max: 280 tokens
- Samples:
sentence_0 sentence_1 how are my holdings doing [DATES]?
[{"get_portfolio(None, True, None)": "portfolio"}, {"get_attribute('portfolio',['gains'],'')": "portfolio"}, {"sort('portfolio','gains','desc')": "portfolio"}]
how much did I earn [DATES]
[{"get_portfolio(None, True, None)": "portfolio"}, {"get_attribute('portfolio',['gains'],'')": "portfolio"}, {"sort('portfolio','gains','desc')": "portfolio"}]
how am i doing [DATES]?
[{"get_portfolio(None, True, None)": "portfolio"}, {"get_attribute('portfolio',['gains'],'')": "portfolio"}, {"sort('portfolio','gains','desc')": "portfolio"}]
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 10per_device_eval_batch_size
: 10num_train_epochs
: 6multi_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 10per_device_eval_batch_size
: 10per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 6max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}tp_size
: 0fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Click to expand
Epoch | Step | Training Loss | cosine_ndcg@10 |
---|---|---|---|
0.0204 | 2 | - | 0.0719 |
0.0408 | 4 | - | 0.0729 |
0.0612 | 6 | - | 0.0741 |
0.0816 | 8 | - | 0.0767 |
0.1020 | 10 | - | 0.0807 |
0.1224 | 12 | - | 0.0846 |
0.1429 | 14 | - | 0.0876 |
0.1633 | 16 | - | 0.0927 |
0.1837 | 18 | - | 0.0978 |
0.2041 | 20 | - | 0.1019 |
0.2245 | 22 | - | 0.1064 |
0.2449 | 24 | - | 0.1091 |
0.2653 | 26 | - | 0.1116 |
0.2857 | 28 | - | 0.1143 |
0.3061 | 30 | - | 0.1174 |
0.3265 | 32 | - | 0.1185 |
0.3469 | 34 | - | 0.1225 |
0.3673 | 36 | - | 0.1254 |
0.3878 | 38 | - | 0.1298 |
0.4082 | 40 | - | 0.1330 |
0.4286 | 42 | - | 0.1341 |
0.4490 | 44 | - | 0.1356 |
0.4694 | 46 | - | 0.1388 |
0.4898 | 48 | - | 0.1421 |
0.5102 | 50 | - | 0.1424 |
0.5306 | 52 | - | 0.1439 |
0.5510 | 54 | - | 0.1464 |
0.5714 | 56 | - | 0.1478 |
0.5918 | 58 | - | 0.1489 |
0.6122 | 60 | - | 0.1502 |
0.6327 | 62 | - | 0.1511 |
0.6531 | 64 | - | 0.1506 |
0.6735 | 66 | - | 0.1511 |
0.6939 | 68 | - | 0.1516 |
0.7143 | 70 | - | 0.1530 |
0.7347 | 72 | - | 0.1523 |
0.7551 | 74 | - | 0.1538 |
0.7755 | 76 | - | 0.1542 |
0.7959 | 78 | - | 0.1555 |
0.8163 | 80 | - | 0.1549 |
0.8367 | 82 | - | 0.1549 |
0.8571 | 84 | - | 0.1544 |
0.8776 | 86 | - | 0.1545 |
0.8980 | 88 | - | 0.1543 |
0.9184 | 90 | - | 0.1548 |
0.9388 | 92 | - | 0.1556 |
0.9592 | 94 | - | 0.1569 |
0.9796 | 96 | - | 0.1579 |
1.0 | 98 | - | 0.1585 |
1.0204 | 100 | - | 0.1588 |
1.0408 | 102 | - | 0.1588 |
1.0612 | 104 | - | 0.1593 |
1.0816 | 106 | - | 0.1606 |
1.1020 | 108 | - | 0.1609 |
1.1224 | 110 | - | 0.1610 |
1.1429 | 112 | - | 0.1602 |
1.1633 | 114 | - | 0.1606 |
1.1837 | 116 | - | 0.1611 |
1.2041 | 118 | - | 0.1611 |
1.2245 | 120 | - | 0.1617 |
1.2449 | 122 | - | 0.1622 |
1.2653 | 124 | - | 0.1620 |
1.2857 | 126 | - | 0.1629 |
1.3061 | 128 | - | 0.1630 |
1.3265 | 130 | - | 0.1634 |
1.3469 | 132 | - | 0.1638 |
1.3673 | 134 | - | 0.1643 |
1.3878 | 136 | - | 0.1650 |
1.4082 | 138 | - | 0.1661 |
1.4286 | 140 | - | 0.1660 |
1.4490 | 142 | - | 0.1667 |
1.4694 | 144 | - | 0.1678 |
1.4898 | 146 | - | 0.1675 |
1.5102 | 148 | - | 0.1675 |
1.5306 | 150 | - | 0.1683 |
1.5510 | 152 | - | 0.1684 |
1.5714 | 154 | - | 0.1683 |
1.5918 | 156 | - | 0.1686 |
1.6122 | 158 | - | 0.1692 |
1.6327 | 160 | - | 0.1694 |
1.6531 | 162 | - | 0.1688 |
1.6735 | 164 | - | 0.1688 |
1.6939 | 166 | - | 0.1690 |
1.7143 | 168 | - | 0.1689 |
1.7347 | 170 | - | 0.1686 |
1.7551 | 172 | - | 0.1688 |
1.7755 | 174 | - | 0.1689 |
1.7959 | 176 | - | 0.1691 |
1.8163 | 178 | - | 0.1693 |
1.8367 | 180 | - | 0.1695 |
1.8571 | 182 | - | 0.1704 |
1.8776 | 184 | - | 0.1701 |
1.8980 | 186 | - | 0.1709 |
1.9184 | 188 | - | 0.1712 |
1.9388 | 190 | - | 0.1713 |
1.9592 | 192 | - | 0.1719 |
1.9796 | 194 | - | 0.1720 |
2.0 | 196 | - | 0.1720 |
2.0204 | 198 | - | 0.1719 |
2.0408 | 200 | - | 0.1722 |
2.0612 | 202 | - | 0.1722 |
2.0816 | 204 | - | 0.1726 |
2.1020 | 206 | - | 0.1729 |
2.1224 | 208 | - | 0.1735 |
2.1429 | 210 | - | 0.1739 |
2.1633 | 212 | - | 0.1738 |
2.1837 | 214 | - | 0.1744 |
2.2041 | 216 | - | 0.1746 |
2.2245 | 218 | - | 0.1743 |
2.2449 | 220 | - | 0.1745 |
2.2653 | 222 | - | 0.1745 |
2.2857 | 224 | - | 0.1743 |
2.3061 | 226 | - | 0.1737 |
2.3265 | 228 | - | 0.1739 |
2.3469 | 230 | - | 0.1734 |
2.3673 | 232 | - | 0.1728 |
2.3878 | 234 | - | 0.1720 |
2.4082 | 236 | - | 0.1721 |
2.4286 | 238 | - | 0.1727 |
2.4490 | 240 | - | 0.1738 |
2.4694 | 242 | - | 0.1735 |
2.4898 | 244 | - | 0.1733 |
2.5102 | 246 | - | 0.1736 |
2.5306 | 248 | - | 0.1735 |
2.5510 | 250 | - | 0.1741 |
2.5714 | 252 | - | 0.1742 |
2.5918 | 254 | - | 0.1747 |
2.6122 | 256 | - | 0.1755 |
2.6327 | 258 | - | 0.1756 |
2.6531 | 260 | - | 0.1759 |
2.6735 | 262 | - | 0.1761 |
2.6939 | 264 | - | 0.1762 |
2.7143 | 266 | - | 0.1759 |
2.7347 | 268 | - | 0.1763 |
2.7551 | 270 | - | 0.1756 |
2.7755 | 272 | - | 0.1753 |
2.7959 | 274 | - | 0.1756 |
2.8163 | 276 | - | 0.1758 |
2.8367 | 278 | - | 0.1760 |
2.8571 | 280 | - | 0.1759 |
2.8776 | 282 | - | 0.1752 |
2.8980 | 284 | - | 0.1757 |
2.9184 | 286 | - | 0.1755 |
2.9388 | 288 | - | 0.1753 |
2.9592 | 290 | - | 0.1751 |
2.9796 | 292 | - | 0.1763 |
3.0 | 294 | - | 0.1767 |
3.0204 | 296 | - | 0.1760 |
3.0408 | 298 | - | 0.1757 |
3.0612 | 300 | - | 0.1756 |
3.0816 | 302 | - | 0.1755 |
3.1020 | 304 | - | 0.1753 |
3.1224 | 306 | - | 0.1752 |
3.1429 | 308 | - | 0.1754 |
3.1633 | 310 | - | 0.1750 |
3.1837 | 312 | - | 0.1741 |
3.2041 | 314 | - | 0.1741 |
3.2245 | 316 | - | 0.1744 |
3.2449 | 318 | - | 0.1748 |
3.2653 | 320 | - | 0.1747 |
3.2857 | 322 | - | 0.1747 |
3.3061 | 324 | - | 0.1751 |
3.3265 | 326 | - | 0.1754 |
3.3469 | 328 | - | 0.1752 |
3.3673 | 330 | - | 0.1754 |
3.3878 | 332 | - | 0.1755 |
3.4082 | 334 | - | 0.1765 |
3.4286 | 336 | - | 0.1768 |
3.4490 | 338 | - | 0.1771 |
3.4694 | 340 | - | 0.1775 |
3.4898 | 342 | - | 0.1766 |
3.5102 | 344 | - | 0.1766 |
3.5306 | 346 | - | 0.1773 |
3.5510 | 348 | - | 0.1775 |
3.5714 | 350 | - | 0.1778 |
3.5918 | 352 | - | 0.1779 |
3.6122 | 354 | - | 0.1776 |
3.6327 | 356 | - | 0.1775 |
3.6531 | 358 | - | 0.1769 |
3.6735 | 360 | - | 0.1773 |
3.6939 | 362 | - | 0.1771 |
3.7143 | 364 | - | 0.1773 |
3.7347 | 366 | - | 0.1773 |
3.7551 | 368 | - | 0.1775 |
3.7755 | 370 | - | 0.1775 |
3.7959 | 372 | - | 0.1775 |
3.8163 | 374 | - | 0.1774 |
3.8367 | 376 | - | 0.1771 |
3.8571 | 378 | - | 0.1770 |
3.8776 | 380 | - | 0.1767 |
3.8980 | 382 | - | 0.1772 |
3.9184 | 384 | - | 0.1781 |
3.9388 | 386 | - | 0.1783 |
3.9592 | 388 | - | 0.1778 |
3.9796 | 390 | - | 0.1778 |
4.0 | 392 | - | 0.1779 |
4.0204 | 394 | - | 0.1778 |
4.0408 | 396 | - | 0.1779 |
4.0612 | 398 | - | 0.1780 |
4.0816 | 400 | - | 0.1784 |
4.1020 | 402 | - | 0.1786 |
4.1224 | 404 | - | 0.1795 |
4.1429 | 406 | - | 0.1799 |
4.1633 | 408 | - | 0.1806 |
4.1837 | 410 | - | 0.1806 |
4.2041 | 412 | - | 0.1806 |
4.2245 | 414 | - | 0.1806 |
4.2449 | 416 | - | 0.1805 |
4.2653 | 418 | - | 0.1805 |
4.2857 | 420 | - | 0.1808 |
4.3061 | 422 | - | 0.1805 |
4.3265 | 424 | - | 0.1805 |
4.3469 | 426 | - | 0.1808 |
4.3673 | 428 | - | 0.1805 |
4.3878 | 430 | - | 0.1805 |
4.4082 | 432 | - | 0.1805 |
4.4286 | 434 | - | 0.1806 |
4.4490 | 436 | - | 0.1806 |
4.4694 | 438 | - | 0.1810 |
4.4898 | 440 | - | 0.1811 |
4.5102 | 442 | - | 0.1807 |
4.5306 | 444 | - | 0.1806 |
4.5510 | 446 | - | 0.1805 |
4.5714 | 448 | - | 0.1807 |
4.5918 | 450 | - | 0.1806 |
4.6122 | 452 | - | 0.1804 |
4.6327 | 454 | - | 0.1804 |
4.6531 | 456 | - | 0.1802 |
4.6735 | 458 | - | 0.1801 |
4.6939 | 460 | - | 0.1804 |
4.7143 | 462 | - | 0.1811 |
4.7347 | 464 | - | 0.1811 |
4.7551 | 466 | - | 0.1810 |
4.7755 | 468 | - | 0.1807 |
4.7959 | 470 | - | 0.1810 |
4.8163 | 472 | - | 0.1810 |
4.8367 | 474 | - | 0.1810 |
4.8571 | 476 | - | 0.1808 |
4.8776 | 478 | - | 0.1810 |
4.8980 | 480 | - | 0.1808 |
4.9184 | 482 | - | 0.1809 |
4.9388 | 484 | - | 0.1809 |
4.9592 | 486 | - | 0.1814 |
4.9796 | 488 | - | 0.1814 |
5.0 | 490 | - | 0.1813 |
5.0204 | 492 | - | 0.1811 |
5.0408 | 494 | - | 0.1812 |
5.0612 | 496 | - | 0.1814 |
5.0816 | 498 | - | 0.1812 |
5.1020 | 500 | 0.3771 | 0.1815 |
5.1224 | 502 | - | 0.1817 |
5.1429 | 504 | - | 0.1818 |
5.1633 | 506 | - | 0.1819 |
5.1837 | 508 | - | 0.1819 |
5.2041 | 510 | - | 0.1820 |
5.2245 | 512 | - | 0.1818 |
5.2449 | 514 | - | 0.1821 |
5.2653 | 516 | - | 0.1821 |
5.2857 | 518 | - | 0.1821 |
5.3061 | 520 | - | 0.1825 |
5.3265 | 522 | - | 0.1825 |
5.3469 | 524 | - | 0.1825 |
5.3673 | 526 | - | 0.1822 |
5.3878 | 528 | - | 0.1822 |
5.4082 | 530 | - | 0.1822 |
5.4286 | 532 | - | 0.1828 |
5.4490 | 534 | - | 0.1830 |
5.4694 | 536 | - | 0.1827 |
5.4898 | 538 | - | 0.1827 |
5.5102 | 540 | - | 0.1830 |
5.5306 | 542 | - | 0.1833 |
5.5510 | 544 | - | 0.1833 |
5.5714 | 546 | - | 0.1835 |
5.5918 | 548 | - | 0.1835 |
5.6122 | 550 | - | 0.1835 |
5.6327 | 552 | - | 0.1837 |
5.6531 | 554 | - | 0.1837 |
5.6735 | 556 | - | 0.1837 |
5.6939 | 558 | - | 0.1837 |
5.7143 | 560 | - | 0.1836 |
5.7347 | 562 | - | 0.1836 |
5.7551 | 564 | - | 0.1836 |
5.7755 | 566 | - | 0.1839 |
Framework Versions
- Python: 3.12.2
- Sentence Transformers: 3.4.1
- Transformers: 4.50.0
- PyTorch: 2.6.0
- Accelerate: 1.5.2
- Datasets: 3.4.1
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 3
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for magnifi/bge-small-en-v1.5-ft-orc-test
Base model
BAAI/bge-small-en-v1.5Evaluation results
- Cosine Accuracy@1 on Unknownself-reported0.666
- Cosine Accuracy@3 on Unknownself-reported0.916
- Cosine Accuracy@5 on Unknownself-reported0.957
- Cosine Accuracy@10 on Unknownself-reported0.980
- Cosine Precision@1 on Unknownself-reported0.666
- Cosine Precision@3 on Unknownself-reported0.305
- Cosine Precision@5 on Unknownself-reported0.191
- Cosine Precision@10 on Unknownself-reported0.098
- Cosine Recall@1 on Unknownself-reported0.018
- Cosine Recall@3 on Unknownself-reported0.025