File size: 5,162 Bytes
0c13f95 783ea42 c73fb46 783ea42 07397b0 783ea42 07397b0 783ea42 07397b0 783ea42 07397b0 783ea42 6ddc589 783ea42 6ddc589 783ea42 6ddc589 783ea42 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 |
---
tags:
- vision
- image-matching
inference: false
---
# SuperPoint
## Overview
The SuperPoint model was proposed
in [SuperPoint: Self-Supervised Interest Point Detection and Description](https://arxiv.org/abs/1712.07629) by Daniel
DeTone, Tomasz Malisiewicz and Andrew Rabinovich.
This model is the result of a self-supervised training of a fully-convolutional network for interest point detection and
description. The model is able to detect interest points that are repeatable under homographic transformations and
provide a descriptor for each point. The use of the model in its own is limited, but it can be used as a feature
extractor for other tasks such as homography estimation, image matching, etc.
The abstract from the paper is the following:
*This paper presents a self-supervised framework for training interest point detectors and descriptors suitable for a
large number of multiple-view geometry problems in computer vision. As opposed to patch-based neural networks, our
fully-convolutional model operates on full-sized images and jointly computes pixel-level interest point locations and
associated descriptors in one forward pass. We introduce Homographic Adaptation, a multi-scale, multi-homography
approach for boosting interest point detection repeatability and performing cross-domain adaptation (e.g.,
synthetic-to-real). Our model, when trained on the MS-COCO generic image dataset using Homographic Adaptation, is able
to repeatedly detect a much richer set of interest points than the initial pre-adapted deep model and any other
traditional corner detector. The final system gives rise to state-of-the-art homography estimation results on HPatches
when compared to LIFT, SIFT and ORB.*
## Demo notebook
A demo notebook showcasing inference + visualization with SuperPoint can be found [here](https://github.com/NielsRogge/Transformers-Tutorials/blob/master/SuperPoint/Inference_with_SuperPoint_to_detect_interest_points_in_an_image.ipynb).
## How to use
Here is a quick example of using the model to detect interest points in an image:
```python
from transformers import AutoImageProcessor, SuperPointForKeypointDetection
import torch
from PIL import Image
import requests
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)
processor = AutoImageProcessor.from_pretrained("magic-leap-community/superpoint")
model = SuperPointForKeypointDetection.from_pretrained("magic-leap-community/superpoint")
inputs = processor(image, return_tensors="pt")
outputs = model(**inputs)
```
The outputs contain the list of keypoint coordinates with their respective score and description (a 256-long vector).
You can also feed multiple images to the model. Due to the nature of SuperPoint, to output a dynamic number of keypoints,
you will need to use the mask attribute to retrieve the respective information :
```python
from transformers import AutoImageProcessor, SuperPointForKeypointDetection
import torch
from PIL import Image
import requests
url_image_1 = "http://images.cocodataset.org/val2017/000000039769.jpg"
image_1 = Image.open(requests.get(url_image_1, stream=True).raw)
url_image_2 = "http://images.cocodataset.org/test-stuff2017/000000000568.jpg"
image_2 = Image.open(requests.get(url_image_2, stream=True).raw)
images = [image_1, image_2]
processor = AutoImageProcessor.from_pretrained("magic-leap-community/superpoint")
model = SuperPointForKeypointDetection.from_pretrained("magic-leap-community/superpoint")
inputs = processor(images, return_tensors="pt")
outputs = model(**inputs)
```
We can now visualize the keypoints.
```
import matplotlib.pyplot as plt
import torch
for i in range(len(images)):
image = images[i]
image_width, image_height = image.size
image_mask = outputs.mask[i]
image_indices = torch.nonzero(image_mask).squeeze()
image_scores = outputs.scores[i][image_indices]
image_keypoints = outputs.keypoints[i][image_indices]
keypoints = image_keypoints.detach().numpy()
scores = image_scores.detach().numpy()
valid_keypoints = [
(kp, score) for kp, score in zip(keypoints, scores)
if 0 <= kp[0] < image_width and 0 <= kp[1] < image_height
]
valid_keypoints, valid_scores = zip(*valid_keypoints)
valid_keypoints = torch.tensor(valid_keypoints)
valid_scores = torch.tensor(valid_scores)
print(valid_keypoints.shape)
plt.axis('off')
plt.imshow(image)
plt.scatter(
valid_keypoints[:, 0],
valid_keypoints[:, 1],
s=valid_scores * 100,
c='red'
)
plt.show()
```
This model was contributed by [stevenbucaille](https://huggingface.co/stevenbucaille).
The original code can be found [here](https://github.com/magicleap/SuperPointPretrainedNetwork).
```bibtex
@inproceedings{detone2018superpoint,
title={Superpoint: Self-supervised interest point detection and description},
author={DeTone, Daniel and Malisiewicz, Tomasz and Rabinovich, Andrew},
booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition workshops},
pages={224--236},
year={2018}
}
``` |