Update README.md
Browse files
README.md
CHANGED
@@ -36,7 +36,7 @@ when compared to LIFT, SIFT and ORB.*
|
|
36 |
Here is a quick example of using the model to detect interest points in an image:
|
37 |
|
38 |
```python
|
39 |
-
from transformers import AutoImageProcessor,
|
40 |
import torch
|
41 |
from PIL import Image
|
42 |
import requests
|
@@ -44,8 +44,8 @@ import requests
|
|
44 |
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
45 |
image = Image.open(requests.get(url, stream=True).raw)
|
46 |
|
47 |
-
processor = AutoImageProcessor.from_pretrained("
|
48 |
-
model =
|
49 |
|
50 |
inputs = processor(image, return_tensors="pt")
|
51 |
outputs = model(**inputs)
|
@@ -57,7 +57,7 @@ You can also feed multiple images to the model. Due to the nature of SuperPoint,
|
|
57 |
you will need to use the mask attribute to retrieve the respective information :
|
58 |
|
59 |
```python
|
60 |
-
from transformers import AutoImageProcessor,
|
61 |
import torch
|
62 |
from PIL import Image
|
63 |
import requests
|
@@ -69,8 +69,8 @@ image_2 = Image.open(requests.get(url_image_2, stream=True).raw)
|
|
69 |
|
70 |
images = [image_1, image_2]
|
71 |
|
72 |
-
processor = AutoImageProcessor.from_pretrained("
|
73 |
-
model =
|
74 |
|
75 |
inputs = processor(images, return_tensors="pt")
|
76 |
outputs = model(**inputs)
|
|
|
36 |
Here is a quick example of using the model to detect interest points in an image:
|
37 |
|
38 |
```python
|
39 |
+
from transformers import AutoImageProcessor, SuperPointForKeypointDetection
|
40 |
import torch
|
41 |
from PIL import Image
|
42 |
import requests
|
|
|
44 |
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
45 |
image = Image.open(requests.get(url, stream=True).raw)
|
46 |
|
47 |
+
processor = AutoImageProcessor.from_pretrained("magic-leap-community/superpoint")
|
48 |
+
model = SuperPointForKeypointDetection.from_pretrained("magic-leap-community/superpoint")
|
49 |
|
50 |
inputs = processor(image, return_tensors="pt")
|
51 |
outputs = model(**inputs)
|
|
|
57 |
you will need to use the mask attribute to retrieve the respective information :
|
58 |
|
59 |
```python
|
60 |
+
from transformers import AutoImageProcessor, SuperPointForKeypointDetection
|
61 |
import torch
|
62 |
from PIL import Image
|
63 |
import requests
|
|
|
69 |
|
70 |
images = [image_1, image_2]
|
71 |
|
72 |
+
processor = AutoImageProcessor.from_pretrained("magic-leap-community/superpoint")
|
73 |
+
model = SuperPointForKeypointDetection.from_pretrained("magic-leap-community/superpoint")
|
74 |
|
75 |
inputs = processor(images, return_tensors="pt")
|
76 |
outputs = model(**inputs)
|