macedonizer commited on
Commit
7a9f809
·
1 Parent(s): 125d698

readme.md fixed, hopefully

Browse files
Files changed (1) hide show
  1. README.md +9 -8
README.md CHANGED
@@ -1,13 +1,14 @@
1
  ---
2
- language: gr
3
- -
4
- thumbnail: https://huggingface.co/macedonizer/gr-roberta-base/lets-talk-about-nlp-gr.jpg
5
  license: Apache 2.0
6
  datasets:
7
- - wiki-gr
 
8
  ---
9
 
10
- # gr-gpt2
11
  Test the whole generation capabilities here: https://transformer.huggingface.co/doc/gpt2-large
12
  Pretrained model on English language using a causal language modeling (CLM) objective. It was introduced in
13
  [this paper](https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf)
@@ -31,10 +32,10 @@ Here is how to use this model to get the features of a given text in PyTorch:
31
  import random
32
  from transformers import AutoTokenizer, AutoModelWithLMHead
33
 
34
- tokenizer = AutoTokenizer.from_pretrained('macedonizer/gr-gpt2') \
35
- model = AutoModelWithLMHead.from_pretrained('macedonizer/gr-gpt2')
36
 
37
- input_text = 'Η Αθήνα είναι'
38
 
39
  if len(input_text) == 0: \
40
  encoded_input = tokenizer(input_text, return_tensors="pt") \
 
1
  ---
2
+ language:
3
+ - mk
4
+ thumbnail: https://huggingface.co/macedonizer/mk-roberta-base/blaze-koneski.jpg
5
  license: Apache 2.0
6
  datasets:
7
+ - wiki-mk
8
+ - time-mk-news-2010-2015
9
  ---
10
 
11
+ # mk-gpt2
12
  Test the whole generation capabilities here: https://transformer.huggingface.co/doc/gpt2-large
13
  Pretrained model on English language using a causal language modeling (CLM) objective. It was introduced in
14
  [this paper](https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf)
 
32
  import random
33
  from transformers import AutoTokenizer, AutoModelWithLMHead
34
 
35
+ tokenizer = AutoTokenizer.from_pretrained('macedonizer/mk-gpt2') \
36
+ model = AutoModelWithLMHead.from_pretrained('macedonizer/mk-gpt2')
37
 
38
+ input_text = 'Скопје е '
39
 
40
  if len(input_text) == 0: \
41
  encoded_input = tokenizer(input_text, return_tensors="pt") \