macedonizer
commited on
Commit
·
7a9f809
1
Parent(s):
125d698
readme.md fixed, hopefully
Browse files
README.md
CHANGED
@@ -1,13 +1,14 @@
|
|
1 |
---
|
2 |
-
language:
|
3 |
-
-
|
4 |
-
thumbnail: https://huggingface.co/macedonizer/
|
5 |
license: Apache 2.0
|
6 |
datasets:
|
7 |
-
- wiki-
|
|
|
8 |
---
|
9 |
|
10 |
-
#
|
11 |
Test the whole generation capabilities here: https://transformer.huggingface.co/doc/gpt2-large
|
12 |
Pretrained model on English language using a causal language modeling (CLM) objective. It was introduced in
|
13 |
[this paper](https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf)
|
@@ -31,10 +32,10 @@ Here is how to use this model to get the features of a given text in PyTorch:
|
|
31 |
import random
|
32 |
from transformers import AutoTokenizer, AutoModelWithLMHead
|
33 |
|
34 |
-
tokenizer = AutoTokenizer.from_pretrained('macedonizer/
|
35 |
-
model = AutoModelWithLMHead.from_pretrained('macedonizer/
|
36 |
|
37 |
-
input_text = '
|
38 |
|
39 |
if len(input_text) == 0: \
|
40 |
encoded_input = tokenizer(input_text, return_tensors="pt") \
|
|
|
1 |
---
|
2 |
+
language:
|
3 |
+
- mk
|
4 |
+
thumbnail: https://huggingface.co/macedonizer/mk-roberta-base/blaze-koneski.jpg
|
5 |
license: Apache 2.0
|
6 |
datasets:
|
7 |
+
- wiki-mk
|
8 |
+
- time-mk-news-2010-2015
|
9 |
---
|
10 |
|
11 |
+
# mk-gpt2
|
12 |
Test the whole generation capabilities here: https://transformer.huggingface.co/doc/gpt2-large
|
13 |
Pretrained model on English language using a causal language modeling (CLM) objective. It was introduced in
|
14 |
[this paper](https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf)
|
|
|
32 |
import random
|
33 |
from transformers import AutoTokenizer, AutoModelWithLMHead
|
34 |
|
35 |
+
tokenizer = AutoTokenizer.from_pretrained('macedonizer/mk-gpt2') \
|
36 |
+
model = AutoModelWithLMHead.from_pretrained('macedonizer/mk-gpt2')
|
37 |
|
38 |
+
input_text = 'Скопје е '
|
39 |
|
40 |
if len(input_text) == 0: \
|
41 |
encoded_input = tokenizer(input_text, return_tensors="pt") \
|