macedonizer commited on
Commit
125d698
·
1 Parent(s): 58dc9f3

readme.md add

Browse files
Files changed (1) hide show
  1. README.md +65 -0
README.md ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: gr
3
+ -
4
+ thumbnail: https://huggingface.co/macedonizer/gr-roberta-base/lets-talk-about-nlp-gr.jpg
5
+ license: Apache 2.0
6
+ datasets:
7
+ - wiki-gr
8
+ ---
9
+
10
+ # gr-gpt2
11
+ Test the whole generation capabilities here: https://transformer.huggingface.co/doc/gpt2-large
12
+ Pretrained model on English language using a causal language modeling (CLM) objective. It was introduced in
13
+ [this paper](https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf)
14
+ and first released at [this page](https://openai.com/blog/better-language-models/).
15
+
16
+ ## Model description
17
+ mk-gpt2 is a transformers model pretrained on a very large corpus of Macedonian data in a self-supervised fashion. This
18
+ means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots
19
+ of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely,
20
+ it was trained to guess the next word in sentences.
21
+ More precisely, inputs are sequences of continuous text of a certain length and the targets are the same sequence,
22
+ shifted one token (word or piece of word) to the right. The model uses internally a mask-mechanism to make sure the
23
+ predictions for the token `i` only uses the inputs from `1` to `i` but not the future tokens.
24
+ This way, the model learns an inner representation of the Macedonian language that can then be used to extract features
25
+ useful for downstream tasks. The model is best at what it was pretrained for however, which is generating texts from a
26
+ prompt.
27
+
28
+ ### How to use
29
+ Here is how to use this model to get the features of a given text in PyTorch:
30
+
31
+ import random
32
+ from transformers import AutoTokenizer, AutoModelWithLMHead
33
+
34
+ tokenizer = AutoTokenizer.from_pretrained('macedonizer/gr-gpt2') \
35
+ model = AutoModelWithLMHead.from_pretrained('macedonizer/gr-gpt2')
36
+
37
+ input_text = 'Η Αθήνα είναι'
38
+
39
+ if len(input_text) == 0: \
40
+ encoded_input = tokenizer(input_text, return_tensors="pt") \
41
+ output = model.generate( \
42
+ bos_token_id=random.randint(1, 50000), \
43
+ do_sample=True, \
44
+ top_k=50, \
45
+ max_length=1024, \
46
+ top_p=0.95, \
47
+ num_return_sequences=1, \
48
+ ) \
49
+ else: \
50
+ encoded_input = tokenizer(input_text, return_tensors="pt") \
51
+ output = model.generate( \
52
+ **encoded_input, \
53
+ bos_token_id=random.randint(1, 50000), \
54
+ do_sample=True, \
55
+ top_k=50, \
56
+ max_length=1024, \
57
+ top_p=0.95, \
58
+ num_return_sequences=1, \
59
+ )
60
+
61
+ decoded_output = [] \
62
+ for sample in output: \
63
+ decoded_output.append(tokenizer.decode(sample, skip_special_tokens=True))
64
+
65
+ print(decoded_output)