gpt2-finetuned-mcqa

This model is a fine-tuned version of openai-community/gpt2 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.4696
  • Bertscore Precision: 0.1390
  • Bertscore Recall: 0.1471
  • Bertscore F1: 0.1428

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Bertscore Precision Bertscore Recall Bertscore F1
4.6412 1.0000 11719 2.9435 0.1223 0.1435 0.1316
4.4659 2.0 23439 2.8198 0.1268 0.1445 0.1346
4.1443 3.0000 35158 2.7298 0.1326 0.1452 0.1384
4.1037 4.0 46878 2.6608 0.1348 0.1457 0.1399
4.0107 5.0000 58597 2.5980 0.1338 0.1462 0.1395
4.0216 6.0 70317 2.5494 0.1353 0.1463 0.1404
3.5677 7.0000 82036 2.5156 0.1371 0.1466 0.1415
3.619 8.0 93756 2.4859 0.1376 0.1468 0.1419
3.5389 9.0000 105475 2.4735 0.1391 0.1470 0.1429
3.713 9.9996 117190 2.4696 0.1390 0.1471 0.1428

Framework versions

  • Transformers 4.40.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
19
Safetensors
Model size
124M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for mNLP-project/gpt2-finetuned-mcqa

Finetuned
(1469)
this model
Finetunes
1 model