NLI-Lora-Fine-Tuning-10K-ALBERT

This model is a fine-tuned version of Alireza1044/albert-base-v2-mnli on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5040
  • Accuracy: 0.8087

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 312 0.5855 0.7969
0.6904 2.0 624 0.5286 0.7992
0.6904 3.0 936 0.5205 0.8010
0.5659 4.0 1248 0.5168 0.8021
0.5529 5.0 1560 0.5128 0.8042
0.5529 6.0 1872 0.5096 0.8054
0.5459 7.0 2184 0.5071 0.8076
0.5459 8.0 2496 0.5055 0.8081
0.5319 9.0 2808 0.5044 0.8086
0.5319 10.0 3120 0.5040 0.8087

Framework versions

  • PEFT 0.9.1.dev0
  • Transformers 4.38.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
9
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for m4faisal/NLI-Lora-Fine-Tuning-10K-ALBERT

Adapter
(1)
this model

Space using m4faisal/NLI-Lora-Fine-Tuning-10K-ALBERT 1