|
--- |
|
language: fa |
|
datasets: |
|
- common_voice |
|
tags: |
|
- audio |
|
- automatic-speech-recognition |
|
- speech |
|
- xlsr-fine-tuning-week |
|
license: apache-2.0 |
|
widget: |
|
- example_title: Common Voice sample 687 |
|
src: https://huggingface.co/m3hrdadfi/wav2vec2-large-xlsr-persian/resolve/main/sample687.flac |
|
- example_title: Common Voice sample 1671 |
|
src: https://huggingface.co/m3hrdadfi/wav2vec2-large-xlsr-persian/resolve/main/sample1671.flac |
|
model-index: |
|
- name: XLSR Wav2Vec2 Persian (Farsi) by Mehrdad Farahani |
|
results: |
|
- task: |
|
name: Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: Common Voice fa |
|
type: common_voice |
|
args: fa |
|
metrics: |
|
- name: Test WER |
|
type: wer |
|
value: 32.20 |
|
|
|
--- |
|
|
|
# Wav2Vec2-Large-XLSR-53-Persian |
|
|
|
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) in Persian (Farsi) using [Common Voice](https://huggingface.co/datasets/common_voice). When using this model, make sure that your speech input is sampled at 16kHz. |
|
|
|
## Usage |
|
The model can be used directly (without a language model) as follows: |
|
|
|
**Requirements** |
|
```bash |
|
# requirement packages |
|
!pip install git+https://github.com/huggingface/datasets.git |
|
!pip install git+https://github.com/huggingface/transformers.git |
|
!pip install torchaudio |
|
!pip install librosa |
|
!pip install jiwer |
|
!pip install hazm |
|
``` |
|
|
|
|
|
**Prediction** |
|
```python |
|
import librosa |
|
import torch |
|
import torchaudio |
|
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor |
|
from datasets import load_dataset |
|
|
|
import numpy as np |
|
import hazm |
|
import re |
|
import string |
|
|
|
import IPython.display as ipd |
|
|
|
_normalizer = hazm.Normalizer() |
|
chars_to_ignore = [ |
|
",", "?", ".", "!", "-", ";", ":", '""', "%", "'", '"', "�", |
|
"#", "!", "؟", "?", "«", "»", "ء", "،", "(", ")", "؛", "'ٔ", "٬",'ٔ', ",", "?", |
|
".", "!", "-", ";", ":",'"',"“", "%", "‘", "”", "�", "–", "…", "_", "”", '“', '„' |
|
] |
|
|
|
# In case of farsi |
|
chars_to_ignore = chars_to_ignore + list(string.ascii_lowercase + string.digits) |
|
|
|
chars_to_mapping = { |
|
'ك': 'ک', 'دِ': 'د', 'بِ': 'ب', 'زِ': 'ز', 'ذِ': 'ذ', 'شِ': 'ش', 'سِ': 'س', 'ى': 'ی', |
|
'ي': 'ی', 'أ': 'ا', 'ؤ': 'و', "ے": "ی", "ۀ": "ه", "ﭘ": "پ", "ﮐ": "ک", "ﯽ": "ی", |
|
"ﺎ": "ا", "ﺑ": "ب", "ﺘ": "ت", "ﺧ": "خ", "ﺩ": "د", "ﺱ": "س", "ﻀ": "ض", "ﻌ": "ع", |
|
"ﻟ": "ل", "ﻡ": "م", "ﻢ": "م", "ﻪ": "ه", "ﻮ": "و", "ئ": "ی", 'ﺍ': "ا", 'ة': "ه", |
|
'ﯾ': "ی", 'ﯿ': "ی", 'ﺒ': "ب", 'ﺖ': "ت", 'ﺪ': "د", 'ﺮ': "ر", 'ﺴ': "س", 'ﺷ': "ش", |
|
'ﺸ': "ش", 'ﻋ': "ع", 'ﻤ': "م", 'ﻥ': "ن", 'ﻧ': "ن", 'ﻭ': "و", 'ﺭ': "ر", "ﮔ": "گ", |
|
"\u200c": " ", "\u200d": " ", "\u200e": " ", "\u200f": " ", "\ufeff": " ", |
|
} |
|
|
|
def multiple_replace(text, chars_to_mapping): |
|
pattern = "|".join(map(re.escape, chars_to_mapping.keys())) |
|
return re.sub(pattern, lambda m: chars_to_mapping[m.group()], str(text)) |
|
|
|
def remove_special_characters(text, chars_to_ignore_regex): |
|
text = re.sub(chars_to_ignore_regex, '', text).lower() + " " |
|
return text |
|
|
|
def normalizer(batch, chars_to_ignore, chars_to_mapping): |
|
chars_to_ignore_regex = f"""[{"".join(chars_to_ignore)}]""" |
|
text = batch["sentence"].lower().strip() |
|
|
|
text = _normalizer.normalize(text) |
|
text = multiple_replace(text, chars_to_mapping) |
|
text = remove_special_characters(text, chars_to_ignore_regex) |
|
|
|
batch["sentence"] = text |
|
return batch |
|
|
|
|
|
def speech_file_to_array_fn(batch): |
|
speech_array, sampling_rate = torchaudio.load(batch["path"]) |
|
speech_array = speech_array.squeeze().numpy() |
|
speech_array = librosa.resample(np.asarray(speech_array), sampling_rate, 16_000) |
|
|
|
batch["speech"] = speech_array |
|
return batch |
|
|
|
|
|
def predict(batch): |
|
features = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) |
|
|
|
input_values = features.input_values.to(device) |
|
attention_mask = features.attention_mask.to(device) |
|
|
|
with torch.no_grad(): |
|
logits = model(input_values, attention_mask=attention_mask).logits |
|
|
|
pred_ids = torch.argmax(logits, dim=-1) |
|
|
|
batch["predicted"] = processor.batch_decode(pred_ids)[0] |
|
return batch |
|
|
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
processor = Wav2Vec2Processor.from_pretrained("m3hrdadfi/wav2vec2-large-xlsr-persian") |
|
model = Wav2Vec2ForCTC.from_pretrained("m3hrdadfi/wav2vec2-large-xlsr-persian").to(device) |
|
|
|
dataset = load_dataset("common_voice", "fa", split="test[:1%]") |
|
dataset = dataset.map( |
|
normalizer, |
|
fn_kwargs={"chars_to_ignore": chars_to_ignore, "chars_to_mapping": chars_to_mapping}, |
|
remove_columns=list(set(dataset.column_names) - set(['sentence', 'path'])) |
|
) |
|
|
|
dataset = dataset.map(speech_file_to_array_fn) |
|
result = dataset.map(predict) |
|
|
|
max_items = np.random.randint(0, len(result), 20).tolist() |
|
for i in max_items: |
|
reference, predicted = result["sentence"][i], result["predicted"][i] |
|
print("reference:", reference) |
|
print("predicted:", predicted) |
|
print('---') |
|
``` |
|
|
|
**Output:** |
|
```text |
|
reference: اطلاعات مسری است |
|
predicted: اطلاعات مسری است |
|
--- |
|
reference: نه منظورم اینه که وقتی که ساکته چه کاریه خودمونه بندازیم زحمت |
|
predicted: نه منظورم اینه که وقتی که ساکت چی کاریه خودمونو بندازیم زحمت |
|
--- |
|
reference: من آب پرتقال می خورم لطفا |
|
predicted: من آپ ارتغال می خورم لطفا |
|
--- |
|
reference: وقت آن رسیده آنها را که قدم پیش میگذارند بزرگ بداریم |
|
predicted: وقت آ رسیده آنها را که قدم پیش میگذارند بزرگ بداریم |
|
--- |
|
reference: سیم باتری دارید |
|
predicted: سیم باتری دارید |
|
--- |
|
reference: این بهتره تا اینکه به بهونه درس و مشق هر روز بره خونه شون |
|
predicted: این بهتره تا اینکه به بهمونه درسومش خرروز بره خونه اشون |
|
--- |
|
reference: ژاکت تنگ است |
|
predicted: ژاکت تنگ است |
|
--- |
|
reference: آت و اشغال های خیابان |
|
predicted: آت و اشغال های خیابان |
|
--- |
|
reference: من به این روند اعتراض دارم |
|
predicted: من به این لوند تراج دارم |
|
--- |
|
reference: کرایه این مکان چند است |
|
predicted: کرایه این مکان چند است |
|
--- |
|
reference: ولی این فرصت این سهم جوانی اعطا نشده است |
|
predicted: ولی این فرصت این سحم جوانی اتان نشده است |
|
--- |
|
reference: متوجه فاجعهای محیطی میشوم |
|
predicted: متوجه فاجایهای محیطی میشوم |
|
--- |
|
reference: ترافیک شدیدیم بود و دیدن نور ماشینا و چراغا و لامپهای مراکز تجاری حس خوبی بهم میدادن |
|
predicted: ترافیک شدید ی هم بودا دیدن نور ماشینا و چراغ لامپهای مراکز تجاری حس خولی بهم میدادن |
|
--- |
|
reference: این مورد عمل ها مربوط به تخصص شما می شود |
|
predicted: این مورد عملها مربوط به تخصص شما میشود |
|
--- |
|
reference: انرژی خیلی کمی دارم |
|
predicted: انرژی خیلی کمی دارم |
|
--- |
|
reference: زیادی خوبی کردنم تهش داستانه |
|
predicted: زیادی خوبی کردنم ترش داستانه |
|
--- |
|
reference: بردهای که پادشاه شود |
|
predicted: برده ای که پاده شاه شود |
|
--- |
|
reference: یونسکو |
|
predicted: یونسکو |
|
--- |
|
reference: شما اخراج هستید |
|
predicted: شما اخراج هستید |
|
--- |
|
reference: من سفر کردن را دوست دارم |
|
predicted: من سفر کردم را دوست دارم |
|
``` |
|
|
|
## Evaluation |
|
|
|
The model can be evaluated as follows on the Persian (Farsi) test data of Common Voice. |
|
|
|
```python |
|
import librosa |
|
import torch |
|
import torchaudio |
|
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor |
|
from datasets import load_dataset, load_metric |
|
|
|
import numpy as np |
|
import hazm |
|
import re |
|
import string |
|
|
|
_normalizer = hazm.Normalizer() |
|
chars_to_ignore = [ |
|
",", "?", ".", "!", "-", ";", ":", '""', "%", "'", '"', "�", |
|
"#", "!", "؟", "?", "«", "»", "ء", "،", "(", ")", "؛", "'ٔ", "٬",'ٔ', ",", "?", |
|
".", "!", "-", ";", ":",'"',"“", "%", "‘", "”", "�", "–", "…", "_", "”", '“', '„' |
|
] |
|
|
|
# In case of farsi |
|
chars_to_ignore = chars_to_ignore + list(string.ascii_lowercase + string.digits) |
|
|
|
chars_to_mapping = { |
|
'ك': 'ک', 'دِ': 'د', 'بِ': 'ب', 'زِ': 'ز', 'ذِ': 'ذ', 'شِ': 'ش', 'سِ': 'س', 'ى': 'ی', |
|
'ي': 'ی', 'أ': 'ا', 'ؤ': 'و', "ے": "ی", "ۀ": "ه", "ﭘ": "پ", "ﮐ": "ک", "ﯽ": "ی", |
|
"ﺎ": "ا", "ﺑ": "ب", "ﺘ": "ت", "ﺧ": "خ", "ﺩ": "د", "ﺱ": "س", "ﻀ": "ض", "ﻌ": "ع", |
|
"ﻟ": "ل", "ﻡ": "م", "ﻢ": "م", "ﻪ": "ه", "ﻮ": "و", "ئ": "ی", 'ﺍ': "ا", 'ة': "ه", |
|
'ﯾ': "ی", 'ﯿ': "ی", 'ﺒ': "ب", 'ﺖ': "ت", 'ﺪ': "د", 'ﺮ': "ر", 'ﺴ': "س", 'ﺷ': "ش", |
|
'ﺸ': "ش", 'ﻋ': "ع", 'ﻤ': "م", 'ﻥ': "ن", 'ﻧ': "ن", 'ﻭ': "و", 'ﺭ': "ر", "ﮔ": "گ", |
|
"\\u200c": " ", "\\u200d": " ", "\\u200e": " ", "\\u200f": " ", "\\ufeff": " ", |
|
} |
|
|
|
def multiple_replace(text, chars_to_mapping): |
|
pattern = "|".join(map(re.escape, chars_to_mapping.keys())) |
|
return re.sub(pattern, lambda m: chars_to_mapping[m.group()], str(text)) |
|
|
|
def remove_special_characters(text, chars_to_ignore_regex): |
|
text = re.sub(chars_to_ignore_regex, '', text).lower() + " " |
|
return text |
|
|
|
def normalizer(batch, chars_to_ignore, chars_to_mapping): |
|
chars_to_ignore_regex = f"""[{"".join(chars_to_ignore)}]""" |
|
text = batch["sentence"].lower().strip() |
|
|
|
text = _normalizer.normalize(text) |
|
text = multiple_replace(text, chars_to_mapping) |
|
text = remove_special_characters(text, chars_to_ignore_regex) |
|
|
|
batch["sentence"] = text |
|
return batch |
|
|
|
|
|
def speech_file_to_array_fn(batch): |
|
speech_array, sampling_rate = torchaudio.load(batch["path"]) |
|
speech_array = speech_array.squeeze().numpy() |
|
speech_array = librosa.resample(np.asarray(speech_array), sampling_rate, 16_000) |
|
|
|
batch["speech"] = speech_array |
|
return batch |
|
|
|
|
|
def predict(batch): |
|
features = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) |
|
|
|
input_values = features.input_values.to(device) |
|
attention_mask = features.attention_mask.to(device) |
|
|
|
with torch.no_grad(): |
|
logits = model(input_values, attention_mask=attention_mask).logits |
|
|
|
pred_ids = torch.argmax(logits, dim=-1) |
|
|
|
batch["predicted"] = processor.batch_decode(pred_ids)[0] |
|
return batch |
|
|
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
processor = Wav2Vec2Processor.from_pretrained("m3hrdadfi/wav2vec2-large-xlsr-persian") |
|
model = Wav2Vec2ForCTC.from_pretrained("m3hrdadfi/wav2vec2-large-xlsr-persian").to(device) |
|
|
|
dataset = load_dataset("common_voice", "fa", split="test") |
|
dataset = dataset.map( |
|
normalizer, |
|
fn_kwargs={"chars_to_ignore": chars_to_ignore, "chars_to_mapping": chars_to_mapping}, |
|
remove_columns=list(set(dataset.column_names) - set(['sentence', 'path'])) |
|
) |
|
dataset = dataset.map(speech_file_to_array_fn) |
|
result = dataset.map(predict) |
|
|
|
wer = load_metric("wer") |
|
print("WER: {:.2f}".format(100 * wer.compute(predictions=result["predicted"], references=result["sentence"]))) |
|
``` |
|
|
|
**Test Result:** |
|
- WER: 32.20% |
|
|
|
|
|
## Training |
|
The Common Voice `train`, `validation` datasets were used for training. |
|
The script used for training can be found [here](https://colab.research.google.com/github/m3hrdadfi/notebooks/blob/main/Fine_Tune_XLSR_Wav2Vec2_on_Persian_ASR_with_%F0%9F%A4%97_Transformers_ipynb.ipynb) |