wandb: Run history:
wandb:               eval/loss β–ˆβ–†β–…β–ƒβ–‚β–‚β–‚β–‚β–‚β–‚β–β–β–β–β–β–β–β–β–β–β–β–β–β–β–β–β–
wandb:            eval/runtime β–…β–†β–†β–†β–†β–†β–ˆβ–†β–‡β–†β–†β–‡β–†β–‡β–‡β–‡β–‡β–†β–†β–‡β–‡β–‡β–ˆβ–‡β–†β–β–‡
wandb: eval/samples_per_second β–„β–‚β–ƒβ–ƒβ–ƒβ–ƒβ–β–ƒβ–‚β–ƒβ–ƒβ–‚β–ƒβ–‚β–‚β–‚β–‚β–ƒβ–ƒβ–‚β–‚β–‚β–β–‚β–ƒβ–ˆβ–‚
wandb:   eval/steps_per_second β–„β–ƒβ–ƒβ–ƒβ–ƒβ–ƒβ–β–ƒβ–‚β–ƒβ–ƒβ–‚β–ƒβ–ƒβ–‚β–‚β–‚β–ƒβ–ƒβ–‚β–‚β–‚β–β–‚β–ƒβ–ˆβ–ƒ
wandb:             train/epoch β–β–β–β–β–‚β–‚β–‚β–‚β–‚β–ƒβ–ƒβ–ƒβ–ƒβ–„β–„β–„β–„β–…β–…β–…β–…β–…β–†β–†β–†β–†β–†β–†β–†β–†β–†β–†β–‡β–‡β–‡β–‡β–‡β–‡β–ˆβ–ˆ
wandb:       train/global_step β–β–β–β–‚β–‚β–‚β–‚β–‚β–‚β–ƒβ–ƒβ–ƒβ–ƒβ–ƒβ–ƒβ–„β–„β–„β–„β–„β–„β–„β–…β–…β–…β–†β–†β–†β–†β–†β–‡β–‡β–‡β–‡β–‡β–‡β–ˆβ–ˆβ–ˆβ–ˆ
wandb:         train/grad_norm β–ˆβ–ƒβ–‚β–‚β–‚β–„β–‡β–ƒβ–‚β–ƒβ–‚β–‚β–β–‚β–‚β–‚β–‚β–‚β–‚β–‚β–ƒβ–‚β–ƒβ–ƒβ–ƒβ–‚β–ƒβ–ƒβ–ƒβ–ƒβ–ƒβ–ƒβ–ƒβ–ƒβ–ƒβ–„β–„β–ƒβ–ƒβ–ƒ
wandb:     train/learning_rate β–ˆβ–ˆβ–ˆβ–‡β–‡β–‡β–‡β–‡β–†β–†β–†β–†β–†β–†β–†β–…β–…β–…β–…β–…β–…β–…β–„β–„β–„β–ƒβ–ƒβ–ƒβ–ƒβ–ƒβ–‚β–‚β–‚β–‚β–‚β–‚β–‚β–β–β–
wandb:              train/loss β–ˆβ–‚β–…β–ƒβ–β–ƒβ–ƒβ–ƒβ–‚β–β–‚β–β–ƒβ–‚β–β–‚β–„β–‚β–ƒβ–‚β–‚β–β–β–ƒβ–‚β–„β–ƒβ–β–ƒβ–‚β–β–‚β–‚β–β–β–‚β–β–‚β–ƒβ–
wandb: 
wandb: Run summary:
wandb:                eval/loss 0.96995
wandb:             eval/runtime 50.348
wandb:  eval/samples_per_second 6.674
wandb:    eval/steps_per_second 2.225
wandb:               total_flos 2.892717018533069e+16
wandb:              train/epoch 2.46201
wandb:        train/global_step 810
wandb:          train/grad_norm 1.0378
wandb:      train/learning_rate 3e-05
wandb:               train/loss 0.3923
wandb:               train_loss 0.67611
wandb:            train_runtime 3867.4895
wandb: train_samples_per_second 3.403
wandb:   train_steps_per_second 0.425

training_arguments = SFTConfig(
    output_dir=new_model,
    run_name="fine_tune_ocr_correction",
    per_device_train_batch_size=2, # or 8 
    per_device_eval_batch_size=3,
    gradient_accumulation_steps=4,
    optim="paged_adamw_32bit",
    num_train_epochs=5, 
    eval_strategy="steps",
    eval_steps=30,  
    save_steps=30,
    logging_steps=10,  
    warmup_steps=10,
    logging_strategy="steps",
    learning_rate= 5e-5, #2e-4, 
    fp16=use_fp16, 
    bf16=use_bf16,  
    group_by_length=True,
    report_to="wandb",
    max_seq_length=1220,
    save_strategy="steps",
    dataset_text_field="text",
    max_grad_norm=0.3,
    warmup_ratio=0.03,
    load_best_model_at_end = True
)

Llama-3.2-3B-ocr-correction-3-instruction-corrected-mixed-data-real-evaluation.json
Average PCIS: -0.00617385
Average Dataset CER: 0.01391665
Average Model CER: 0.01977127
Average Dataset WER: 0.06207812
Average Model WER: 0.08723665

Llama-3.2-3B-ocr-correction-3-instruction-corrected-mixed-data-synth-evaluation.json
Average PCIS: -0.10465669
Average Dataset CER: 0.09836092
Average Model CER: 0.19205506
Average Dataset WER: 0.21986217
Average Model WER: 1.01686689

Model Card for Model ID

Model Details

Model Description

This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated.

  • Developed by: [More Information Needed]
  • Funded by [optional]: [More Information Needed]
  • Shared by [optional]: [More Information Needed]
  • Model type: [More Information Needed]
  • Language(s) (NLP): [More Information Needed]
  • License: [More Information Needed]
  • Finetuned from model [optional]: [More Information Needed]

Model Sources [optional]

  • Repository: [More Information Needed]
  • Paper [optional]: [More Information Needed]
  • Demo [optional]: [More Information Needed]

Uses

Direct Use

[More Information Needed]

Downstream Use [optional]

[More Information Needed]

Out-of-Scope Use

[More Information Needed]

Bias, Risks, and Limitations

[More Information Needed]

Recommendations

Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.

How to Get Started with the Model

Use the code below to get started with the model.

[More Information Needed]

Training Details

Training Data

[More Information Needed]

Training Procedure

Preprocessing [optional]

[More Information Needed]

Training Hyperparameters

  • Training regime: [More Information Needed]

Speeds, Sizes, Times [optional]

[More Information Needed]

Evaluation

Testing Data, Factors & Metrics

Testing Data

[More Information Needed]

Factors

[More Information Needed]

Metrics

[More Information Needed]

Results

[More Information Needed]

Summary

Model Examination [optional]

[More Information Needed]

Environmental Impact

Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).

  • Hardware Type: [More Information Needed]
  • Hours used: [More Information Needed]
  • Cloud Provider: [More Information Needed]
  • Compute Region: [More Information Needed]
  • Carbon Emitted: [More Information Needed]

Technical Specifications [optional]

Model Architecture and Objective

[More Information Needed]

Compute Infrastructure

[More Information Needed]

Hardware

[More Information Needed]

Software

[More Information Needed]

Citation [optional]

BibTeX:

[More Information Needed]

APA:

[More Information Needed]

Glossary [optional]

[More Information Needed]

More Information [optional]

[More Information Needed]

Model Card Authors [optional]

[More Information Needed]

Model Card Contact

[More Information Needed]

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference API
Unable to determine this model’s pipeline type. Check the docs .