SentenceTransformer based on BAAI/bge-base-en

This is a sentence-transformers model finetuned from BAAI/bge-base-en. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: BAAI/bge-base-en
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 tokens
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the ๐Ÿค— Hub
model = SentenceTransformer("lzwcv/finetuned-bge-base-en")
# Run inference
sentences = [
    '\nName : Apex Innovations Group\nCategory: Business Consulting, Training Services\nDepartment: Executive\nLocation: Sydney, Australia\nAmount: 1575.34\nCard: Leadership Development Program\nTrip Name: unknown\n',
    '\nName : CloudFlare Inc.\nCategory: Internet & Network Services, SaaS\nDepartment: IT Operations\nLocation: New York, NY\nAmount: 2000.0\nCard: Annual Cloud Services Budget\nTrip Name: unknown\n',
    '\nName : EcoClean Systems\nCategory: Environmental Services, Industrial Equipment Care\nDepartment: Office Administration\nLocation: San Francisco, CA\nAmount: 952.63\nCard: Essential Facility Sustainability\nTrip Name: unknown\n',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Triplet

Metric Value
cosine_accuracy 0.8371
dot_accuracy 0.1629
manhattan_accuracy 0.8281
euclidean_accuracy 0.8371
max_accuracy 0.8371

Triplet

Metric Value
cosine_accuracy 1.0
dot_accuracy 0.0
manhattan_accuracy 0.9714
euclidean_accuracy 1.0
max_accuracy 1.0

Training Details

Training Dataset

Unnamed Dataset

  • Size: 221 training samples
  • Columns: sentence and label
  • Approximate statistics based on the first 221 samples:
    sentence label
    type string int
    details
    • min: 33 tokens
    • mean: 39.6 tokens
    • max: 49 tokens
    • 0: ~4.52%
    • 1: ~4.52%
    • 2: ~5.43%
    • 3: ~2.26%
    • 4: ~2.26%
    • 5: ~2.71%
    • 6: ~3.17%
    • 7: ~3.62%
    • 8: ~2.71%
    • 9: ~5.43%
    • 10: ~2.71%
    • 11: ~4.07%
    • 12: ~1.81%
    • 13: ~4.52%
    • 14: ~4.98%
    • 15: ~3.62%
    • 16: ~4.52%
    • 17: ~4.98%
    • 18: ~4.52%
    • 19: ~2.71%
    • 20: ~2.71%
    • 21: ~4.52%
    • 22: ~3.62%
    • 23: ~4.07%
    • 24: ~3.17%
    • 25: ~4.98%
    • 26: ~1.81%
  • Samples:
    sentence label

    Name : Quantifire Insights
    Category: Predictive Analytics Solutions
    Department: Marketing
    Location: Zurich, Switzerland
    Amount: 1275.58
    Card: Customer Engagement Enhancement
    Trip Name: unknown
    0

    Name : ElevateLearning Solutions
    Category: E-Learning Platforms, Collaborative Software
    Department: Engineering
    Location: Toronto, Canada
    Amount: 1523.89
    Card: Dev Team Skill Boosting Initiative
    Trip Name: unknown
    1

    Name : Innovative Patents Co.
    Category: Intellectual Property Services, Legal Services
    Department: Legal
    Location: New York, NY
    Amount: 3250.0
    Card: Patent Acquisition Fund
    Trip Name: unknown
    2
  • Loss: BatchSemiHardTripletLoss

Evaluation Dataset

Unnamed Dataset

  • Size: 55 evaluation samples
  • Columns: sentence and label
  • Approximate statistics based on the first 55 samples:
    sentence label
    type string int
    details
    • min: 32 tokens
    • mean: 39.73 tokens
    • max: 47 tokens
    • 0: ~1.82%
    • 1: ~5.45%
    • 2: ~9.09%
    • 3: ~3.64%
    • 4: ~5.45%
    • 5: ~1.82%
    • 6: ~1.82%
    • 7: ~5.45%
    • 10: ~5.45%
    • 11: ~5.45%
    • 12: ~3.64%
    • 13: ~1.82%
    • 14: ~3.64%
    • 15: ~3.64%
    • 16: ~7.27%
    • 17: ~1.82%
    • 18: ~5.45%
    • 19: ~5.45%
    • 20: ~1.82%
    • 21: ~1.82%
    • 22: ~3.64%
    • 23: ~1.82%
    • 24: ~7.27%
    • 25: ~3.64%
    • 26: ~1.82%
  • Samples:
    sentence label

    Name : CyberGuard Provisions
    Category: Security Software Solutions, Data Protection Services
    Department: Information Security
    Location: San Francisco, CA
    Amount: 879.92
    Card: Digital Fortress Action Plan
    Trip Name: unknown
    17

    Name : Sphere Financial Systems
    Category: Financial Management Services, International Billing Solutions
    Department: Finance
    Location: London, United Kingdom
    Amount: 856.47
    Card: Cross-Border Transaction Reconciliation
    Trip Name: unknown
    7

    Name : RBC
    Category: Transaction Processing, Financial Services
    Department: Finance
    Location: Limassol, Cyprus
    Amount: 843.56
    Card: Quarterly Financial Management
    Trip Name: unknown
    7
  • Loss: BatchSemiHardTripletLoss

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • learning_rate: 2e-05
  • num_train_epochs: 5
  • warmup_ratio: 0.1
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 5
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step bge-base-en-eval_max_accuracy bge-base-en-train_max_accuracy
0 0 - 0.8371
5.0 35 1.0 -

Framework Versions

  • Python: 3.10.0
  • Sentence Transformers: 3.1.1
  • Transformers: 4.45.2
  • PyTorch: 2.6.0+cu124
  • Accelerate: 1.3.0
  • Datasets: 3.2.0
  • Tokenizers: 0.20.3

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

BatchSemiHardTripletLoss

@misc{hermans2017defense,
    title={In Defense of the Triplet Loss for Person Re-Identification},
    author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
    year={2017},
    eprint={1703.07737},
    archivePrefix={arXiv},
    primaryClass={cs.CV}
}
Downloads last month
2
Safetensors
Model size
109M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for lzwcv/finetuned-bge-base-en

Base model

BAAI/bge-base-en
Finetuned
(17)
this model

Evaluation results