PopBERT / README.md
luerhard's picture
Fix Code Example in README
cf44004 verified
metadata
license: mit
language:
  - de
pipeline_tag: text-classification
metrics:
  - f1
library_name: transformers

PopBERT

PopBERT is a model for German-language populism detection in political speeches within the German Bundestag, based on the deepset/gbert-large model: https://huggingface.co/deepset/gbert-large

It is a multilabel model trained on a manually curated dataset of sentences from the 18th and 19th legislative periods. In addition to capturing the foundational dimensions of populism, namely "anti-elitism" and "people-centrism," the model was also fine-tuned to identify the underlying ideological orientation as either "left-wing" or "right-wing."

Prediction

The model outputs a Tensor of length 4. The table connects the position of the predicted probability to its dimension.

Index Dimension
0 Anti-Elitism
1 People-Centrism
2 Left-Wing Host-Ideology
3 Right-Wing Host-Ideology

Usage Example

import torch
from transformers import AutoModelForSequenceClassification
from transformers import AutoTokenizer

# load tokenizer
tokenizer = AutoTokenizer.from_pretrained("luerhard/PopBERT")

# load model
model = AutoModelForSequenceClassification.from_pretrained("luerhard/PopBERT")

# define text to be predicted
text = (
    "Das ist Klassenkampf von oben, das ist Klassenkampf im Interesse von "
    "Vermögenden und Besitzenden gegen die Mehrheit der Steuerzahlerinnen und "
    "Steuerzahler auf dieser Erde."
)

# encode text with tokenizer
encodings = tokenizer(text, return_tensors="pt")

# predict
with torch.inference_mode():
    out = model(**encodings)

# get probabilties
probs = torch.nn.functional.sigmoid(out.logits)
print(probs.detach().numpy())
[[0.8765146  0.34838045 0.983123   0.02148379]]

Performance

To maximize performance, it is recommended to use the following thresholds per dimension:

[0.415961, 0.295400, 0.429109, 0.302714]

Using these thresholds, the model achieves the following performance on the test set:

Dimension Precision Recall F1
Anti-Elitism 0.81 0.88 0.84
People-Centrism 0.70 0.73 0.71
Left-Wing Ideology 0.69 0.77 0.73
Right-Wing Ideology 0.68 0.66 0.67
--- --- --- ---
micro avg 0.75 0.80 0.77
macro avg 0.72 0.76 0.74