metadata
datasets:
- PygmalionAI/PIPPA
- lemonilia/LimaRP
big thanks to lore for the 8xH100 gpus
awq
zero point, 128 group size, 4 bit gemm
training
base model is meta llama 3 8b instruct trained on pippa then i trained that model on limarp, both at 32k context for 2 epochs each
gen settings
i would start with every sampler off and temperature at 1 and just make min p 0.05, i got good prompts from this but u can also try to gen settings from shori which are copy pasted below
- Main choice (may have repetition issues)
- Temperature: 1.0; Min-P: 0.05-0.10; Presence Penalty: 0.35-0.45
- Alternative 1 (appears to solve repetition issues while being coherent, but reponses might possibly be less truthful)
- Temperature: 2.40-2.50; Min-P: 0.40; Frequency penalty: 0.10-0.15; Temperature last.
- Alternative 2
- Mirostat type: 2, Mirostat Tau: 2.80-3.00; Mirostat Eta: 0.0175-0.0200; neutralize or disable all other samplers
prompting
use the llama 3 instruct format
<|eot_id|>
as stopping sequence/string/token
agnaistic prompt:
<|begin_of_text|><|start_header_id|>system<|end_header_id|>{{#if system}}<|begin_of_text|><|start_header_id|>system<|end_header_id|>{{system}}<|eot_id|>{{/if}}Write {{char}}'s next reply in a fictional roleplay chat between {{#each bot}}{{.name}}, {{/each}}{{char}} and {{user}}.
{{char}}'s Persona: {{personality}}
{{#if memory}}
Important details:
{{memory}}
{{/if}}
{{#if example_dialogue}}This is how {{char}} should talk:
{{example_dialogue}}{{/if}}
This scenario of the conversation: {{scenario}}
Then the roleplay chat between {{#each bot}}{{.name}}, {{/each}}{{char}} and {{user}} begins.<|eot_id|>
{{#each msg}}{{#if .isbot}}<|start_header_id|>response<|end_header_id|>{{/if}}{{#if .isuser}}<|start_header_id|>user<|end_header_id|>{{/if}}{{.name}}: {{.msg}}<|eot_id|>
{{/each}}
{{#if ujb}}<|begin_of_text|><|start_header_id|>system<|end_header_id|>{{ujb}}<|eot_id|>{{/if}}
<|start_header_id|>response<|end_header_id|>{{post}}