Model Card for Model ID

This model checkpoint is the TinyLlama-1.1B fine-tuned on alpaca dataset.

Model Details

Model Sources

Uses

The use of this model should comply with the restrictions from TinyLlama-1.1b and Stanford Alpaca.

How to Get Started with the Model

Use the code below to get started with the model.

# Load model directly
from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("luckychao/TinyAlpaca-1.1B")
model = AutoModelForCausalLM.from_pretrained("luckychao/TinyAlpaca-1.1B")

Training Details

Training Data

We use the alpaca dataset, which is created by researchers from Stanford University.

Training Procedure

We follow the same training procedure and mostly same hyper-parameters to fine-tune the original Alpaca model on Llama. The procedure can be found in stanford_alpaca project.

Training Hyperparameters

--num_train_epochs 3 \
--per_device_train_batch_size 2 \
--per_device_eval_batch_size 2 \
--gradient_accumulation_steps 4 \
--evaluation_strategy "no" \
--save_strategy "steps" \
--save_steps 1000 \
--save_total_limit 1 \
--learning_rate 2e-5 \
--weight_decay 0. \
--warmup_ratio 0.03 \
--lr_scheduler_type "cosine" \
--logging_steps 1 \
--bf16 True \
--fsdp "full_shard auto_wrap" \
--fsdp_transformer_layer_cls_to_wrap 'LlamaDecoderLayer' \
--model_max_length 2048 

Citation

The model is mostly developed for the paper below. Please cite it if you find the repository helpful.

BibTeX:

@article{hao2024exploring,
  title={Exploring Backdoor Vulnerabilities of Chat Models},
  author={Hao, Yunzhuo and Yang, Wenkai and Lin, Yankai},
  journal={arXiv preprint arXiv:2404.02406},
  year={2024}
}
Downloads last month
24
Safetensors
Model size
1.1B params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train luckychao/TinyAlpaca-1.1B