|
--- |
|
license: bsd-3-clause-clear |
|
--- |
|
|
|
# WAFFLE: Multi-Modal Model for Automated Front-End Development |
|
We develope WAFFLE, a fine-tuning approach to train multi-modal LLM (MLLM) to generate HTML code from webpage screenshots or UI designs. WAFFLE uses a structure-aware attention mechanism to improve MLLMs' understanding of HTML's structure and a contrastive fine-tuning approach to align MLLMs' understanding of UI images and HTML code. Models fine-tuned with WAFFLE show up to 9.00 pp (percentage point) higher HTML match, 0.0982 higher CW-SSIM, 32.99 higher CLIP, and 27.12 pp higher LLEM on our new benchmark WebSight-Test and an existing benchmark Design2Code. |
|
|
|
## Updates: |
|
* 10/24/2024: Our preprint avaiable at: [preprint](https://arxiv.org/abs/2410.18362) |
|
* 10/24/2024: Our code (keep maintaining) avaiable at: [code](https://github.com/lt-asset/Waffle) |
|
* 10/24/2024: Our fine-tuned Waffle_VLM_WebSight (7B), using DoRA, is released at: [lt-asset/Waffle_VLM_WebSight](https://huggingface.co/lt-asset/Waffle_VLM_WebSight) |
|
|
|
## Dependency |
|
- peft 0.11.1 |
|
- transformers 4.41.1 |
|
- pytorch 2.3.0 |
|
- selenium |
|
- Python 3.10.14 |
|
- deepspeed 0.14.1 |
|
- datasets 2.19.1 |
|
- beautifulsoup4 4.12.3 |
|
- accelerate 0.30.1 |
|
|
|
## Quick Start |
|
* Input UI design |
|
|
|
Find a webpage screenshot, or UI design: |
|
|
|
![test-495.png](examples/test-495.png) |
|
|
|
* Run Waffle_VLM_WebSight |
|
```python |
|
import torch |
|
from PIL import Image |
|
from transformers import AutoProcessor, AutoModelForCausalLM |
|
from transformers.image_utils import to_numpy_array, PILImageResampling, ChannelDimension |
|
from transformers.image_transforms import resize, to_channel_dimension_format |
|
from utils import TreeBuilder |
|
|
|
|
|
def convert_to_rgb(image): |
|
if image.mode == "RGB": |
|
return image |
|
|
|
image_rgba = image.convert("RGBA") |
|
background = Image.new("RGBA", image_rgba.size, (255, 255, 255)) |
|
alpha_composite = Image.alpha_composite(background, image_rgba) |
|
alpha_composite = alpha_composite.convert("RGB") |
|
return alpha_composite |
|
|
|
|
|
def inference_vlm_websight(image_path, html_path): |
|
|
|
def custom_transform(x): |
|
x = convert_to_rgb(x) |
|
x = to_numpy_array(x) |
|
x = resize(x, (960, 960), resample=PILImageResampling.BILINEAR) |
|
x = processor.image_processor.rescale(x, scale=1 / 255) |
|
x = processor.image_processor.normalize( |
|
x, |
|
mean=processor.image_processor.image_mean, |
|
std=processor.image_processor.image_std |
|
) |
|
x = to_channel_dimension_format(x, ChannelDimension.FIRST) |
|
x = torch.tensor(x) |
|
return x |
|
|
|
model_dir = "lt-asset/Waffle_VLM_WebSight" |
|
processor = AutoProcessor.from_pretrained(model_dir) |
|
model = AutoModelForCausalLM.from_pretrained(model_dir, torch_dtype=torch.bfloat16, trust_remote_code=True).cuda() |
|
|
|
assert model.config.web_attention_range == 2, "Waffle_VLM_WebSight is trained with hierarchical attention applied to 2 / 8 heads" |
|
# use 2/8 = 1/4 attention heads for hierarchical attention (as described in paper) |
|
model.eval() |
|
|
|
image_seq_len = model.config.perceiver_config.resampler_n_latents |
|
BOS_TOKEN = processor.tokenizer.bos_token |
|
BAD_WORDS_IDS = processor.tokenizer(["<image>", "<fake_token_around_image>"], add_special_tokens=False).input_ids |
|
|
|
image = Image.open(image_path) |
|
inputs = processor.tokenizer( |
|
f"{BOS_TOKEN}<fake_token_around_image>{'<image>' * image_seq_len}<fake_token_around_image>", |
|
return_tensors="pt", |
|
add_special_tokens=False, |
|
) |
|
inputs["pixel_values"] = processor.image_processor([image], transform=custom_transform).to(dtype=torch.bfloat16) |
|
inputs_for_generation = {k: v.cuda() for k, v in inputs.items()} |
|
inputs_for_generation["web_attention_mask"] = None |
|
inputs_for_generation["html_tree"] = TreeBuilder(processor.tokenizer) |
|
inputs_for_generation["html_tree"].web_attention_mask = inputs_for_generation["web_attention_mask"] |
|
|
|
generated_ids = model.generate( |
|
**inputs_for_generation, bad_words_ids=BAD_WORDS_IDS, max_length=2048, |
|
num_return_sequences=1, do_sample=False |
|
) |
|
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] |
|
|
|
with open(html_path, 'w') as wp: |
|
wp.write(generated_text) |
|
|
|
|
|
if __name__ == '__main__': |
|
inference_vlm_websight('examples/test-495.png', 'examples/example-495.html') |
|
``` |
|
|
|
* Waffle_VLM_WebSight generated HTML code |
|
|
|
[example-495.html](examples/example-495.html) |
|
|
|
* Rendered Waffle_VLM_WebSight output |
|
|
|
Render the HTML, or preview the HTML to check the correctness: |
|
|
|
![example-495.html](examples/example-495.png) |
|
|
|
## Citation |
|
``` |
|
@misc{liang2024wafflemultimodalmodelautomated, |
|
title={WAFFLE: Multi-Modal Model for Automated Front-End Development}, |
|
author={Shanchao Liang and Nan Jiang and Shangshu Qian and Lin Tan}, |
|
year={2024}, |
|
eprint={2410.18362}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.SE}, |
|
url={https://arxiv.org/abs/2410.18362}, |
|
} |
|
``` |