loveisp's picture
just play
9da491a
{
"policy_class": {
":type:": "<class 'abc.ABCMeta'>",
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
"__module__": "stable_baselines3.common.policies",
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f0bc147e3a0>",
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f0bc147e430>",
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f0bc147e4c0>",
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f0bc147e550>",
"_build": "<function ActorCriticPolicy._build at 0x7f0bc147e5e0>",
"forward": "<function ActorCriticPolicy.forward at 0x7f0bc147e670>",
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f0bc147e700>",
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f0bc147e790>",
"_predict": "<function ActorCriticPolicy._predict at 0x7f0bc147e820>",
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f0bc147e8b0>",
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f0bc147e940>",
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f0bc147e9d0>",
"__abstractmethods__": "frozenset()",
"_abc_impl": "<_abc_data object at 0x7f0bc14769c0>"
},
"verbose": 1,
"policy_kwargs": {},
"observation_space": {
":type:": "<class 'gym.spaces.box.Box'>",
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
"dtype": "float32",
"_shape": [
8
],
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
"high": "[inf inf inf inf inf inf inf inf]",
"bounded_below": "[False False False False False False False False]",
"bounded_above": "[False False False False False False False False]",
"_np_random": null
},
"action_space": {
":type:": "<class 'gym.spaces.discrete.Discrete'>",
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
"n": 4,
"_shape": [],
"dtype": "int64",
"_np_random": null
},
"n_envs": 16,
"num_timesteps": 1015808,
"_total_timesteps": 1000000,
"_num_timesteps_at_start": 0,
"seed": null,
"action_noise": null,
"start_time": 1678067724981693657,
"learning_rate": 0.0003,
"tensorboard_log": null,
"lr_schedule": {
":type:": "<class 'function'>",
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
},
"_last_obs": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJpspzxcWzW6/eNZugC2UrW8ehe5R0WBOQAAgD8AAIA/zT/hPSNiBj3K8xM9/Uoxvjg8ez0aNoi9AAAAAAAAAADNv9K8jwJ9uiNld7uMap04nsdoO1BUBjoAAIA/AACAP4C6k73hKLO64AHIuvoTu7Vd1xK6Y4/kOQAAgD8AAIA/Zk3OvFKQvLlBk5I5qcS9NNFe5bndH6m4AACAPwAAgD+AcAA9FLKaum5Zezl6ZAY00W78uronkLgAAIA/AACAPzNmibynbQE+k5HOu6ZgVb6RChe9+jodPQAAAAAAAAAA5soyPZq4Tj9o9OO8pjG8vvKc/bwqYZC8AAAAAAAAAAAAZ4w9uLaquV3j07qNNXW1D6jKuF629zkAAIA/AACAP81pgzzkfAI+OCp1vQVwkr7J76S9PQrOvQAAAAAAAAAAuqguPnsUyTfPTo+7HBxKt5CA2zty5cq4AACAPwAAgD/NfEw94RaMukhU/ruTXwm2kQAnO/5TdTUAAIA/AACAP828Gzz0vI0+xjJJvd0gbL60Cq68shffvAAAAAAAAAAAs1xjPYvyrT9HYCo/rHmmvowfHbwTgqE9AAAAAAAAAABm/kq8pLAAuVL+17fA60OzPu2BO8aNADcAAIA/AACAP7NNab3U6bY/+E/UvqCEor2fSmK9GoegvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
},
"_last_episode_starts": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
},
"_last_original_obs": null,
"_episode_num": 0,
"use_sde": false,
"sde_sample_freq": -1,
"_current_progress_remaining": -0.015808000000000044,
"ep_info_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVfRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIZQETuHVcYkCUhpRSlIwBbJRN6AOMAXSUR0CgG7yjQAuJdX2UKGgGaAloD0MIQq8/iU/TYUCUhpRSlGgVTegDaBZHQKAjw2vStvJ1fZQoaAZoCWgPQwgI5X0cTZlkQJSGlFKUaBVN6ANoFkdAoCY0snRb8nV9lChoBmgJaA9DCKVrJt9st2ZAlIaUUpRoFU3oA2gWR0CgLge3Ytg8dX2UKGgGaAloD0MIliGOdfEbYECUhpRSlGgVTegDaBZHQKAx8mAskIJ1fZQoaAZoCWgPQwh4mPbNfUpkQJSGlFKUaBVN6ANoFkdAoDUe1c+qznV9lChoBmgJaA9DCBxDAHBscmdAlIaUUpRoFU3oA2gWR0CgNZVGsmv4dX2UKGgGaAloD0MIyhZJu9EVZkCUhpRSlGgVTegDaBZHQKA3U/VRUFV1fZQoaAZoCWgPQwiobi7+NgBiQJSGlFKUaBVN6ANoFkdAoDkHtUn5SHV9lChoBmgJaA9DCD+LpUi+uGFAlIaUUpRoFU3oA2gWR0CgO4jdgv12dX2UKGgGaAloD0MICcOAJVcbYECUhpRSlGgVTegDaBZHQKA8NUe+23N1fZQoaAZoCWgPQwif5uRFJjpdQJSGlFKUaBVN6ANoFkdAoDyr0nPVu3V9lChoBmgJaA9DCJnZ5zFKuGRAlIaUUpRoFU3oA2gWR0CgPLykbgjydX2UKGgGaAloD0MIAwtgykAgZ0CUhpRSlGgVTegDaBZHQKBKjtbcGkh1fZQoaAZoCWgPQwhGlsyxPNxjQJSGlFKUaBVN6ANoFkdAoEs8wxnFpHV9lChoBmgJaA9DCMZun1XmU2NAlIaUUpRoFU3oA2gWR0CgTd2/i5uqdX2UKGgGaAloD0MIZaiKqfTtZkCUhpRSlGgVTegDaBZHQKBOC7ZnL7p1fZQoaAZoCWgPQwjgaTLjbU0pQJSGlFKUaBVL6WgWR0CgUP9VFQVLdX2UKGgGaAloD0MIQPflzPZFZ0CUhpRSlGgVTegDaBZHQKBYofozN2V1fZQoaAZoCWgPQwgZ48PsZeVmQJSGlFKUaBVN6ANoFkdAoFsUpG4I8nV9lChoBmgJaA9DCPwApDZxNmdAlIaUUpRoFU3oA2gWR0CgYYyVObiIdX2UKGgGaAloD0MIdej0vBsvR0CUhpRSlGgVS+NoFkdAoGN6yrxRVXV9lChoBmgJaA9DCFa6u86GvV5AlIaUUpRoFU3oA2gWR0CgY/pkXk5qdX2UKGgGaAloD0MIE2QEVDjyZ0CUhpRSlGgVTegDaBZHQKBl94rSVnp1fZQoaAZoCWgPQwhnt5bJ8LFnQJSGlFKUaBVN6ANoFkdAoGZds54nnnV9lChoBmgJaA9DCBwJNNhUeGJAlIaUUpRoFU3oA2gWR0CgZ9i8e0XxdX2UKGgGaAloD0MIAwXeySevZECUhpRSlGgVTegDaBZHQKBpiMOwxFl1fZQoaAZoCWgPQwhl3xXB/8RgQJSGlFKUaBVN6ANoFkdAoGxRd8iOenV9lChoBmgJaA9DCJ/J/nma3WJAlIaUUpRoFU3oA2gWR0CgbSHy3CsPdX2UKGgGaAloD0MI97AXClh8Y0CUhpRSlGgVTegDaBZHQKBtp76YVqN1fZQoaAZoCWgPQwgcQSrFDgxhQJSGlFKUaBVN6ANoFkdAoHvBBVuJlHV9lChoBmgJaA9DCLg81owMJ2VAlIaUUpRoFU3oA2gWR0CgfCNzS1E3dX2UKGgGaAloD0MIIenTKvqxQECUhpRSlGgVS9ZoFkdAoHxDwz+FUXV9lChoBmgJaA9DCKhXyjJEvmZAlIaUUpRoFU3oA2gWR0CgfZpAlfJFdX2UKGgGaAloD0MI9DY2O1KmYkCUhpRSlGgVTegDaBZHQKB9s6mO2iN1fZQoaAZoCWgPQwinsb0W9LhfQJSGlFKUaBVN6ANoFkdAoH9UvM8oyHV9lChoBmgJaA9DCHAKKxVUSmdAlIaUUpRoFU3oA2gWR0CghLSyt3fRdX2UKGgGaAloD0MIBTQRNrxcc0CUhpRSlGgVTQICaBZHQKCNriqhlDp1fZQoaAZoCWgPQwiL+bmhqYNkQJSGlFKUaBVN6ANoFkdAoI/Woo/iYXV9lChoBmgJaA9DCAYtJGB0g2JAlIaUUpRoFU3oA2gWR0CgkeNlI3BIdX2UKGgGaAloD0MI88ZJYV6CZECUhpRSlGgVTegDaBZHQKCSVgNPP9l1fZQoaAZoCWgPQwgLem8MgeFlQJSGlFKUaBVN6ANoFkdAoJQ1n003wXV9lChoBmgJaA9DCO3ShsNSHGFAlIaUUpRoFU3oA2gWR0CglJbHhjvvdX2UKGgGaAloD0MIUgyQaIKHY0CUhpRSlGgVTegDaBZHQKCV8h0Qsf91fZQoaAZoCWgPQwhuMxXiUZ9yQJSGlFKUaBVNQwNoFkdAoJiZs0pEyHV9lChoBmgJaA9DCJeNzvkpKmRAlIaUUpRoFU3oA2gWR0CgmToOhCdCdX2UKGgGaAloD0MIskY9RCMyY0CUhpRSlGgVTegDaBZHQKCZypkwvg51fZQoaAZoCWgPQwgWwmosYQ1mQJSGlFKUaBVN6ANoFkdAoJoofhddFHV9lChoBmgJaA9DCMB7R40JKVJAlIaUUpRoFUvuaBZHQKCbCTnJT2p1fZQoaAZoCWgPQwjL9iFvOeVnQJSGlFKUaBVN6ANoFkdAoJzFRxcVxnV9lChoBmgJaA9DCJeOOc/YEmJAlIaUUpRoFU3oA2gWR0CgquEBKcurdX2UKGgGaAloD0MI/WfNjz9YY0CUhpRSlGgVTegDaBZHQKCrDnyNGVl1fZQoaAZoCWgPQwgwL8A+OiViQJSGlFKUaBVN6ANoFkdAoK3CV6eGwnV9lChoBmgJaA9DCH2wjA1d4mNAlIaUUpRoFU3oA2gWR0Cgs9kMb3oLdX2UKGgGaAloD0MIEVX4M7yVX0CUhpRSlGgVTegDaBZHQKC6XLkjopx1fZQoaAZoCWgPQwgY0At3Ll9iQJSGlFKUaBVN6ANoFkdAoLvIBaLXMHV9lChoBmgJaA9DCBA8vr3rgGNAlIaUUpRoFU3oA2gWR0CgvXf/m1YydX2UKGgGaAloD0MIQNmUK7yhZECUhpRSlGgVTegDaBZHQKC96g2ZRbd1fZQoaAZoCWgPQwhhMlUwqttkQJSGlFKUaBVN6ANoFkdAoMAtDIBBA3V9lChoBmgJaA9DCOVEuwopS2NAlIaUUpRoFU3oA2gWR0CgwZ8baRISdX2UKGgGaAloD0MICI7LuCmhYkCUhpRSlGgVTegDaBZHQKDFCAz544Z1fZQoaAZoCWgPQwiIvOXqx0VfQJSGlFKUaBVN6ANoFkdAoMXsvqTr3XV9lChoBmgJaA9DCAyuuaN/bmdAlIaUUpRoFU3oA2gWR0CgxqzPSlWPdX2UKGgGaAloD0MIaxFRTN6mYkCUhpRSlGgVTegDaBZHQKDHMoIfKZF1fZQoaAZoCWgPQwjL9iFvOWZnQJSGlFKUaBVN6ANoFkdAoMhihUR3/3V9lChoBmgJaA9DCGjqdYvAYWZAlIaUUpRoFU3oA2gWR0CgytdhiLEUdX2UKGgGaAloD0MISl6dY0DJYECUhpRSlGgVTegDaBZHQKDXnrgwXZZ1fZQoaAZoCWgPQwg8wJMWLrJeQJSGlFKUaBVN6ANoFkdAoNe93dKujnV9lChoBmgJaA9DCPCl8KBZGGBAlIaUUpRoFU3oA2gWR0Cg2bq9oN/fdX2UKGgGaAloD0MITTCcaxg/YECUhpRSlGgVTegDaBZHQKDfyKvV3EB1fZQoaAZoCWgPQwgAdJgvr3JmQJSGlFKUaBVN6ANoFkdAoOh263AmA3V9lChoBmgJaA9DCJAQ5Qtar2NAlIaUUpRoFU3oA2gWR0Cg6nYOMERrdX2UKGgGaAloD0MIIa0x6ISKYECUhpRSlGgVTegDaBZHQKDsbL7oB7x1fZQoaAZoCWgPQwgB28GIfTBgQJSGlFKUaBVN6ANoFkdAoOzU+7lJYnV9lChoBmgJaA9DCL6jxoQYKWZAlIaUUpRoFU3oA2gWR0Cg7xXGwRoRdX2UKGgGaAloD0MI9Ix9ycYZXECUhpRSlGgVTegDaBZHQKDwcemvW6N1fZQoaAZoCWgPQwh7oBUYshpiQJSGlFKUaBVN6ANoFkdAoPL5paiblXV9lChoBmgJaA9DCFK5iVoaMGdAlIaUUpRoFU3oA2gWR0Cg85H6MzdldX2UKGgGaAloD0MIxv1HpsNJYECUhpRSlGgVTegDaBZHQKD0Dul41P51fZQoaAZoCWgPQwiVuflG9PJlQJSGlFKUaBVN6ANoFkdAoPRjJhfBvnV9lChoBmgJaA9DCKSJd4Cn0mNAlIaUUpRoFU3oA2gWR0Cg9ScPe54GdX2UKGgGaAloD0MIpWWk3tM7ZUCUhpRSlGgVTegDaBZHQKD2nPDYRNB1fZQoaAZoCWgPQwhrgNJQIw1lQJSGlFKUaBVN6ANoFkdAoQNocghbGHV9lChoBmgJaA9DCMS12sNe1mVAlIaUUpRoFU3oA2gWR0ChA5ND+irUdX2UKGgGaAloD0MIRG6GG3AkYkCUhpRSlGgVTegDaBZHQKEGDsTFl051fZQoaAZoCWgPQwjx2To4WPhtQJSGlFKUaBVNTgJoFkdAoQkLvCuU2XV9lChoBmgJaA9DCNo391cPMGJAlIaUUpRoFU3oA2gWR0ChDKHJkoWpdX2UKGgGaAloD0MIXRlUGxzdZUCUhpRSlGgVTegDaBZHQKETMufVZs91fZQoaAZoCWgPQwimK9hGPHliQJSGlFKUaBVN6ANoFkdAoRTR6MR6GHV9lChoBmgJaA9DCOkrSDOWsWNAlIaUUpRoFU3oA2gWR0ChFwAMUh3adX2UKGgGaAloD0MIrtNIS2VpYECUhpRSlGgVTegDaBZHQKEZOeDnNgV1fZQoaAZoCWgPQwgoRSv3AkdmQJSGlFKUaBVN6ANoFkdAoRqcTtb9qHV9lChoBmgJaA9DCFKZYg4Cq2RAlIaUUpRoFU3oA2gWR0ChHUUgB91EdX2UKGgGaAloD0MINdO9TmqtZECUhpRSlGgVTegDaBZHQKEeMZof0Vd1fZQoaAZoCWgPQwiY32kyY6tkQJSGlFKUaBVN6ANoFkdAoR7v4O+ZgHV9lChoBmgJaA9DCLXeb7RjA2VAlIaUUpRoFU3oA2gWR0ChH25dGAkLdX2UKGgGaAloD0MIrTB9r6GnZUCUhpRSlGgVTegDaBZHQKEgiS3b2151fZQoaAZoCWgPQwjYYUz6+zxlQJSGlFKUaBVN6ANoFkdAoSK90cOsk3V9lChoBmgJaA9DCMfw2M9ioGRAlIaUUpRoFU3oA2gWR0ChJWoysS00dX2UKGgGaAloD0MIA5Xx77M9Z0CUhpRSlGgVTegDaBZHQKElkRGtp251ZS4="
},
"ep_success_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
},
"_n_updates": 248,
"n_steps": 1024,
"gamma": 0.999,
"gae_lambda": 0.98,
"ent_coef": 0.01,
"vf_coef": 0.5,
"max_grad_norm": 0.5,
"batch_size": 64,
"n_epochs": 4,
"clip_range": {
":type:": "<class 'function'>",
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
},
"clip_range_vf": null,
"normalize_advantage": true,
"target_kl": null
}