loveisp commited on
Commit
9da491a
·
1 Parent(s): c0c331f
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO_MLP
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 245.39 +/- 34.23
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO_MLP** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO_MLP** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f0bc147e3a0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f0bc147e430>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f0bc147e4c0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f0bc147e550>", "_build": "<function ActorCriticPolicy._build at 0x7f0bc147e5e0>", "forward": "<function ActorCriticPolicy.forward at 0x7f0bc147e670>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f0bc147e700>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f0bc147e790>", "_predict": "<function ActorCriticPolicy._predict at 0x7f0bc147e820>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f0bc147e8b0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f0bc147e940>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f0bc147e9d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f0bc14769c0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678067724981693657, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJpspzxcWzW6/eNZugC2UrW8ehe5R0WBOQAAgD8AAIA/zT/hPSNiBj3K8xM9/Uoxvjg8ez0aNoi9AAAAAAAAAADNv9K8jwJ9uiNld7uMap04nsdoO1BUBjoAAIA/AACAP4C6k73hKLO64AHIuvoTu7Vd1xK6Y4/kOQAAgD8AAIA/Zk3OvFKQvLlBk5I5qcS9NNFe5bndH6m4AACAPwAAgD+AcAA9FLKaum5Zezl6ZAY00W78uronkLgAAIA/AACAPzNmibynbQE+k5HOu6ZgVb6RChe9+jodPQAAAAAAAAAA5soyPZq4Tj9o9OO8pjG8vvKc/bwqYZC8AAAAAAAAAAAAZ4w9uLaquV3j07qNNXW1D6jKuF629zkAAIA/AACAP81pgzzkfAI+OCp1vQVwkr7J76S9PQrOvQAAAAAAAAAAuqguPnsUyTfPTo+7HBxKt5CA2zty5cq4AACAPwAAgD/NfEw94RaMukhU/ruTXwm2kQAnO/5TdTUAAIA/AACAP828Gzz0vI0+xjJJvd0gbL60Cq68shffvAAAAAAAAAAAs1xjPYvyrT9HYCo/rHmmvowfHbwTgqE9AAAAAAAAAABm/kq8pLAAuVL+17fA60OzPu2BO8aNADcAAIA/AACAP7NNab3U6bY/+E/UvqCEor2fSmK9GoegvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIZQETuHVcYkCUhpRSlIwBbJRN6AOMAXSUR0CgG7yjQAuJdX2UKGgGaAloD0MIQq8/iU/TYUCUhpRSlGgVTegDaBZHQKAjw2vStvJ1fZQoaAZoCWgPQwgI5X0cTZlkQJSGlFKUaBVN6ANoFkdAoCY0snRb8nV9lChoBmgJaA9DCKVrJt9st2ZAlIaUUpRoFU3oA2gWR0CgLge3Ytg8dX2UKGgGaAloD0MIliGOdfEbYECUhpRSlGgVTegDaBZHQKAx8mAskIJ1fZQoaAZoCWgPQwh4mPbNfUpkQJSGlFKUaBVN6ANoFkdAoDUe1c+qznV9lChoBmgJaA9DCBxDAHBscmdAlIaUUpRoFU3oA2gWR0CgNZVGsmv4dX2UKGgGaAloD0MIyhZJu9EVZkCUhpRSlGgVTegDaBZHQKA3U/VRUFV1fZQoaAZoCWgPQwiobi7+NgBiQJSGlFKUaBVN6ANoFkdAoDkHtUn5SHV9lChoBmgJaA9DCD+LpUi+uGFAlIaUUpRoFU3oA2gWR0CgO4jdgv12dX2UKGgGaAloD0MICcOAJVcbYECUhpRSlGgVTegDaBZHQKA8NUe+23N1fZQoaAZoCWgPQwif5uRFJjpdQJSGlFKUaBVN6ANoFkdAoDyr0nPVu3V9lChoBmgJaA9DCJnZ5zFKuGRAlIaUUpRoFU3oA2gWR0CgPLykbgjydX2UKGgGaAloD0MIAwtgykAgZ0CUhpRSlGgVTegDaBZHQKBKjtbcGkh1fZQoaAZoCWgPQwhGlsyxPNxjQJSGlFKUaBVN6ANoFkdAoEs8wxnFpHV9lChoBmgJaA9DCMZun1XmU2NAlIaUUpRoFU3oA2gWR0CgTd2/i5uqdX2UKGgGaAloD0MIZaiKqfTtZkCUhpRSlGgVTegDaBZHQKBOC7ZnL7p1fZQoaAZoCWgPQwjgaTLjbU0pQJSGlFKUaBVL6WgWR0CgUP9VFQVLdX2UKGgGaAloD0MIQPflzPZFZ0CUhpRSlGgVTegDaBZHQKBYofozN2V1fZQoaAZoCWgPQwgZ48PsZeVmQJSGlFKUaBVN6ANoFkdAoFsUpG4I8nV9lChoBmgJaA9DCPwApDZxNmdAlIaUUpRoFU3oA2gWR0CgYYyVObiIdX2UKGgGaAloD0MIdej0vBsvR0CUhpRSlGgVS+NoFkdAoGN6yrxRVXV9lChoBmgJaA9DCFa6u86GvV5AlIaUUpRoFU3oA2gWR0CgY/pkXk5qdX2UKGgGaAloD0MIE2QEVDjyZ0CUhpRSlGgVTegDaBZHQKBl94rSVnp1fZQoaAZoCWgPQwhnt5bJ8LFnQJSGlFKUaBVN6ANoFkdAoGZds54nnnV9lChoBmgJaA9DCBwJNNhUeGJAlIaUUpRoFU3oA2gWR0CgZ9i8e0XxdX2UKGgGaAloD0MIAwXeySevZECUhpRSlGgVTegDaBZHQKBpiMOwxFl1fZQoaAZoCWgPQwhl3xXB/8RgQJSGlFKUaBVN6ANoFkdAoGxRd8iOenV9lChoBmgJaA9DCJ/J/nma3WJAlIaUUpRoFU3oA2gWR0CgbSHy3CsPdX2UKGgGaAloD0MI97AXClh8Y0CUhpRSlGgVTegDaBZHQKBtp76YVqN1fZQoaAZoCWgPQwgcQSrFDgxhQJSGlFKUaBVN6ANoFkdAoHvBBVuJlHV9lChoBmgJaA9DCLg81owMJ2VAlIaUUpRoFU3oA2gWR0CgfCNzS1E3dX2UKGgGaAloD0MIIenTKvqxQECUhpRSlGgVS9ZoFkdAoHxDwz+FUXV9lChoBmgJaA9DCKhXyjJEvmZAlIaUUpRoFU3oA2gWR0CgfZpAlfJFdX2UKGgGaAloD0MI9DY2O1KmYkCUhpRSlGgVTegDaBZHQKB9s6mO2iN1fZQoaAZoCWgPQwinsb0W9LhfQJSGlFKUaBVN6ANoFkdAoH9UvM8oyHV9lChoBmgJaA9DCHAKKxVUSmdAlIaUUpRoFU3oA2gWR0CghLSyt3fRdX2UKGgGaAloD0MIBTQRNrxcc0CUhpRSlGgVTQICaBZHQKCNriqhlDp1fZQoaAZoCWgPQwiL+bmhqYNkQJSGlFKUaBVN6ANoFkdAoI/Woo/iYXV9lChoBmgJaA9DCAYtJGB0g2JAlIaUUpRoFU3oA2gWR0CgkeNlI3BIdX2UKGgGaAloD0MI88ZJYV6CZECUhpRSlGgVTegDaBZHQKCSVgNPP9l1fZQoaAZoCWgPQwgLem8MgeFlQJSGlFKUaBVN6ANoFkdAoJQ1n003wXV9lChoBmgJaA9DCO3ShsNSHGFAlIaUUpRoFU3oA2gWR0CglJbHhjvvdX2UKGgGaAloD0MIUgyQaIKHY0CUhpRSlGgVTegDaBZHQKCV8h0Qsf91fZQoaAZoCWgPQwhuMxXiUZ9yQJSGlFKUaBVNQwNoFkdAoJiZs0pEyHV9lChoBmgJaA9DCJeNzvkpKmRAlIaUUpRoFU3oA2gWR0CgmToOhCdCdX2UKGgGaAloD0MIskY9RCMyY0CUhpRSlGgVTegDaBZHQKCZypkwvg51fZQoaAZoCWgPQwgWwmosYQ1mQJSGlFKUaBVN6ANoFkdAoJoofhddFHV9lChoBmgJaA9DCMB7R40JKVJAlIaUUpRoFUvuaBZHQKCbCTnJT2p1fZQoaAZoCWgPQwjL9iFvOeVnQJSGlFKUaBVN6ANoFkdAoJzFRxcVxnV9lChoBmgJaA9DCJeOOc/YEmJAlIaUUpRoFU3oA2gWR0CgquEBKcurdX2UKGgGaAloD0MI/WfNjz9YY0CUhpRSlGgVTegDaBZHQKCrDnyNGVl1fZQoaAZoCWgPQwgwL8A+OiViQJSGlFKUaBVN6ANoFkdAoK3CV6eGwnV9lChoBmgJaA9DCH2wjA1d4mNAlIaUUpRoFU3oA2gWR0Cgs9kMb3oLdX2UKGgGaAloD0MIEVX4M7yVX0CUhpRSlGgVTegDaBZHQKC6XLkjopx1fZQoaAZoCWgPQwgY0At3Ll9iQJSGlFKUaBVN6ANoFkdAoLvIBaLXMHV9lChoBmgJaA9DCBA8vr3rgGNAlIaUUpRoFU3oA2gWR0CgvXf/m1YydX2UKGgGaAloD0MIQNmUK7yhZECUhpRSlGgVTegDaBZHQKC96g2ZRbd1fZQoaAZoCWgPQwhhMlUwqttkQJSGlFKUaBVN6ANoFkdAoMAtDIBBA3V9lChoBmgJaA9DCOVEuwopS2NAlIaUUpRoFU3oA2gWR0CgwZ8baRISdX2UKGgGaAloD0MICI7LuCmhYkCUhpRSlGgVTegDaBZHQKDFCAz544Z1fZQoaAZoCWgPQwiIvOXqx0VfQJSGlFKUaBVN6ANoFkdAoMXsvqTr3XV9lChoBmgJaA9DCAyuuaN/bmdAlIaUUpRoFU3oA2gWR0CgxqzPSlWPdX2UKGgGaAloD0MIaxFRTN6mYkCUhpRSlGgVTegDaBZHQKDHMoIfKZF1fZQoaAZoCWgPQwjL9iFvOWZnQJSGlFKUaBVN6ANoFkdAoMhihUR3/3V9lChoBmgJaA9DCGjqdYvAYWZAlIaUUpRoFU3oA2gWR0CgytdhiLEUdX2UKGgGaAloD0MISl6dY0DJYECUhpRSlGgVTegDaBZHQKDXnrgwXZZ1fZQoaAZoCWgPQwg8wJMWLrJeQJSGlFKUaBVN6ANoFkdAoNe93dKujnV9lChoBmgJaA9DCPCl8KBZGGBAlIaUUpRoFU3oA2gWR0Cg2bq9oN/fdX2UKGgGaAloD0MITTCcaxg/YECUhpRSlGgVTegDaBZHQKDfyKvV3EB1fZQoaAZoCWgPQwgAdJgvr3JmQJSGlFKUaBVN6ANoFkdAoOh263AmA3V9lChoBmgJaA9DCJAQ5Qtar2NAlIaUUpRoFU3oA2gWR0Cg6nYOMERrdX2UKGgGaAloD0MIIa0x6ISKYECUhpRSlGgVTegDaBZHQKDsbL7oB7x1fZQoaAZoCWgPQwgB28GIfTBgQJSGlFKUaBVN6ANoFkdAoOzU+7lJYnV9lChoBmgJaA9DCL6jxoQYKWZAlIaUUpRoFU3oA2gWR0Cg7xXGwRoRdX2UKGgGaAloD0MI9Ix9ycYZXECUhpRSlGgVTegDaBZHQKDwcemvW6N1fZQoaAZoCWgPQwh7oBUYshpiQJSGlFKUaBVN6ANoFkdAoPL5paiblXV9lChoBmgJaA9DCFK5iVoaMGdAlIaUUpRoFU3oA2gWR0Cg85H6MzdldX2UKGgGaAloD0MIxv1HpsNJYECUhpRSlGgVTegDaBZHQKD0Dul41P51fZQoaAZoCWgPQwiVuflG9PJlQJSGlFKUaBVN6ANoFkdAoPRjJhfBvnV9lChoBmgJaA9DCKSJd4Cn0mNAlIaUUpRoFU3oA2gWR0Cg9ScPe54GdX2UKGgGaAloD0MIpWWk3tM7ZUCUhpRSlGgVTegDaBZHQKD2nPDYRNB1fZQoaAZoCWgPQwhrgNJQIw1lQJSGlFKUaBVN6ANoFkdAoQNocghbGHV9lChoBmgJaA9DCMS12sNe1mVAlIaUUpRoFU3oA2gWR0ChA5ND+irUdX2UKGgGaAloD0MIRG6GG3AkYkCUhpRSlGgVTegDaBZHQKEGDsTFl051fZQoaAZoCWgPQwjx2To4WPhtQJSGlFKUaBVNTgJoFkdAoQkLvCuU2XV9lChoBmgJaA9DCNo391cPMGJAlIaUUpRoFU3oA2gWR0ChDKHJkoWpdX2UKGgGaAloD0MIXRlUGxzdZUCUhpRSlGgVTegDaBZHQKETMufVZs91fZQoaAZoCWgPQwimK9hGPHliQJSGlFKUaBVN6ANoFkdAoRTR6MR6GHV9lChoBmgJaA9DCOkrSDOWsWNAlIaUUpRoFU3oA2gWR0ChFwAMUh3adX2UKGgGaAloD0MIrtNIS2VpYECUhpRSlGgVTegDaBZHQKEZOeDnNgV1fZQoaAZoCWgPQwgoRSv3AkdmQJSGlFKUaBVN6ANoFkdAoRqcTtb9qHV9lChoBmgJaA9DCFKZYg4Cq2RAlIaUUpRoFU3oA2gWR0ChHUUgB91EdX2UKGgGaAloD0MINdO9TmqtZECUhpRSlGgVTegDaBZHQKEeMZof0Vd1fZQoaAZoCWgPQwiY32kyY6tkQJSGlFKUaBVN6ANoFkdAoR7v4O+ZgHV9lChoBmgJaA9DCLXeb7RjA2VAlIaUUpRoFU3oA2gWR0ChH25dGAkLdX2UKGgGaAloD0MIrTB9r6GnZUCUhpRSlGgVTegDaBZHQKEgiS3b2151fZQoaAZoCWgPQwjYYUz6+zxlQJSGlFKUaBVN6ANoFkdAoSK90cOsk3V9lChoBmgJaA9DCMfw2M9ioGRAlIaUUpRoFU3oA2gWR0ChJWoysS00dX2UKGgGaAloD0MIA5Xx77M9Z0CUhpRSlGgVTegDaBZHQKElkRGtp251ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
dv_ppo_lunarlander.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:755cbf00b104c8c044e681e91e9b69fb5afbdf07642a97318c806e137139c910
3
+ size 147420
dv_ppo_lunarlander/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
dv_ppo_lunarlander/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f0bc147e3a0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f0bc147e430>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f0bc147e4c0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f0bc147e550>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f0bc147e5e0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f0bc147e670>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f0bc147e700>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f0bc147e790>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f0bc147e820>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f0bc147e8b0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f0bc147e940>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f0bc147e9d0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f0bc14769c0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 1015808,
47
+ "_total_timesteps": 1000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1678067724981693657,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJpspzxcWzW6/eNZugC2UrW8ehe5R0WBOQAAgD8AAIA/zT/hPSNiBj3K8xM9/Uoxvjg8ez0aNoi9AAAAAAAAAADNv9K8jwJ9uiNld7uMap04nsdoO1BUBjoAAIA/AACAP4C6k73hKLO64AHIuvoTu7Vd1xK6Y4/kOQAAgD8AAIA/Zk3OvFKQvLlBk5I5qcS9NNFe5bndH6m4AACAPwAAgD+AcAA9FLKaum5Zezl6ZAY00W78uronkLgAAIA/AACAPzNmibynbQE+k5HOu6ZgVb6RChe9+jodPQAAAAAAAAAA5soyPZq4Tj9o9OO8pjG8vvKc/bwqYZC8AAAAAAAAAAAAZ4w9uLaquV3j07qNNXW1D6jKuF629zkAAIA/AACAP81pgzzkfAI+OCp1vQVwkr7J76S9PQrOvQAAAAAAAAAAuqguPnsUyTfPTo+7HBxKt5CA2zty5cq4AACAPwAAgD/NfEw94RaMukhU/ruTXwm2kQAnO/5TdTUAAIA/AACAP828Gzz0vI0+xjJJvd0gbL60Cq68shffvAAAAAAAAAAAs1xjPYvyrT9HYCo/rHmmvowfHbwTgqE9AAAAAAAAAABm/kq8pLAAuVL+17fA60OzPu2BO8aNADcAAIA/AACAP7NNab3U6bY/+E/UvqCEor2fSmK9GoegvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.015808000000000044,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVfRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIZQETuHVcYkCUhpRSlIwBbJRN6AOMAXSUR0CgG7yjQAuJdX2UKGgGaAloD0MIQq8/iU/TYUCUhpRSlGgVTegDaBZHQKAjw2vStvJ1fZQoaAZoCWgPQwgI5X0cTZlkQJSGlFKUaBVN6ANoFkdAoCY0snRb8nV9lChoBmgJaA9DCKVrJt9st2ZAlIaUUpRoFU3oA2gWR0CgLge3Ytg8dX2UKGgGaAloD0MIliGOdfEbYECUhpRSlGgVTegDaBZHQKAx8mAskIJ1fZQoaAZoCWgPQwh4mPbNfUpkQJSGlFKUaBVN6ANoFkdAoDUe1c+qznV9lChoBmgJaA9DCBxDAHBscmdAlIaUUpRoFU3oA2gWR0CgNZVGsmv4dX2UKGgGaAloD0MIyhZJu9EVZkCUhpRSlGgVTegDaBZHQKA3U/VRUFV1fZQoaAZoCWgPQwiobi7+NgBiQJSGlFKUaBVN6ANoFkdAoDkHtUn5SHV9lChoBmgJaA9DCD+LpUi+uGFAlIaUUpRoFU3oA2gWR0CgO4jdgv12dX2UKGgGaAloD0MICcOAJVcbYECUhpRSlGgVTegDaBZHQKA8NUe+23N1fZQoaAZoCWgPQwif5uRFJjpdQJSGlFKUaBVN6ANoFkdAoDyr0nPVu3V9lChoBmgJaA9DCJnZ5zFKuGRAlIaUUpRoFU3oA2gWR0CgPLykbgjydX2UKGgGaAloD0MIAwtgykAgZ0CUhpRSlGgVTegDaBZHQKBKjtbcGkh1fZQoaAZoCWgPQwhGlsyxPNxjQJSGlFKUaBVN6ANoFkdAoEs8wxnFpHV9lChoBmgJaA9DCMZun1XmU2NAlIaUUpRoFU3oA2gWR0CgTd2/i5uqdX2UKGgGaAloD0MIZaiKqfTtZkCUhpRSlGgVTegDaBZHQKBOC7ZnL7p1fZQoaAZoCWgPQwjgaTLjbU0pQJSGlFKUaBVL6WgWR0CgUP9VFQVLdX2UKGgGaAloD0MIQPflzPZFZ0CUhpRSlGgVTegDaBZHQKBYofozN2V1fZQoaAZoCWgPQwgZ48PsZeVmQJSGlFKUaBVN6ANoFkdAoFsUpG4I8nV9lChoBmgJaA9DCPwApDZxNmdAlIaUUpRoFU3oA2gWR0CgYYyVObiIdX2UKGgGaAloD0MIdej0vBsvR0CUhpRSlGgVS+NoFkdAoGN6yrxRVXV9lChoBmgJaA9DCFa6u86GvV5AlIaUUpRoFU3oA2gWR0CgY/pkXk5qdX2UKGgGaAloD0MIE2QEVDjyZ0CUhpRSlGgVTegDaBZHQKBl94rSVnp1fZQoaAZoCWgPQwhnt5bJ8LFnQJSGlFKUaBVN6ANoFkdAoGZds54nnnV9lChoBmgJaA9DCBwJNNhUeGJAlIaUUpRoFU3oA2gWR0CgZ9i8e0XxdX2UKGgGaAloD0MIAwXeySevZECUhpRSlGgVTegDaBZHQKBpiMOwxFl1fZQoaAZoCWgPQwhl3xXB/8RgQJSGlFKUaBVN6ANoFkdAoGxRd8iOenV9lChoBmgJaA9DCJ/J/nma3WJAlIaUUpRoFU3oA2gWR0CgbSHy3CsPdX2UKGgGaAloD0MI97AXClh8Y0CUhpRSlGgVTegDaBZHQKBtp76YVqN1fZQoaAZoCWgPQwgcQSrFDgxhQJSGlFKUaBVN6ANoFkdAoHvBBVuJlHV9lChoBmgJaA9DCLg81owMJ2VAlIaUUpRoFU3oA2gWR0CgfCNzS1E3dX2UKGgGaAloD0MIIenTKvqxQECUhpRSlGgVS9ZoFkdAoHxDwz+FUXV9lChoBmgJaA9DCKhXyjJEvmZAlIaUUpRoFU3oA2gWR0CgfZpAlfJFdX2UKGgGaAloD0MI9DY2O1KmYkCUhpRSlGgVTegDaBZHQKB9s6mO2iN1fZQoaAZoCWgPQwinsb0W9LhfQJSGlFKUaBVN6ANoFkdAoH9UvM8oyHV9lChoBmgJaA9DCHAKKxVUSmdAlIaUUpRoFU3oA2gWR0CghLSyt3fRdX2UKGgGaAloD0MIBTQRNrxcc0CUhpRSlGgVTQICaBZHQKCNriqhlDp1fZQoaAZoCWgPQwiL+bmhqYNkQJSGlFKUaBVN6ANoFkdAoI/Woo/iYXV9lChoBmgJaA9DCAYtJGB0g2JAlIaUUpRoFU3oA2gWR0CgkeNlI3BIdX2UKGgGaAloD0MI88ZJYV6CZECUhpRSlGgVTegDaBZHQKCSVgNPP9l1fZQoaAZoCWgPQwgLem8MgeFlQJSGlFKUaBVN6ANoFkdAoJQ1n003wXV9lChoBmgJaA9DCO3ShsNSHGFAlIaUUpRoFU3oA2gWR0CglJbHhjvvdX2UKGgGaAloD0MIUgyQaIKHY0CUhpRSlGgVTegDaBZHQKCV8h0Qsf91fZQoaAZoCWgPQwhuMxXiUZ9yQJSGlFKUaBVNQwNoFkdAoJiZs0pEyHV9lChoBmgJaA9DCJeNzvkpKmRAlIaUUpRoFU3oA2gWR0CgmToOhCdCdX2UKGgGaAloD0MIskY9RCMyY0CUhpRSlGgVTegDaBZHQKCZypkwvg51fZQoaAZoCWgPQwgWwmosYQ1mQJSGlFKUaBVN6ANoFkdAoJoofhddFHV9lChoBmgJaA9DCMB7R40JKVJAlIaUUpRoFUvuaBZHQKCbCTnJT2p1fZQoaAZoCWgPQwjL9iFvOeVnQJSGlFKUaBVN6ANoFkdAoJzFRxcVxnV9lChoBmgJaA9DCJeOOc/YEmJAlIaUUpRoFU3oA2gWR0CgquEBKcurdX2UKGgGaAloD0MI/WfNjz9YY0CUhpRSlGgVTegDaBZHQKCrDnyNGVl1fZQoaAZoCWgPQwgwL8A+OiViQJSGlFKUaBVN6ANoFkdAoK3CV6eGwnV9lChoBmgJaA9DCH2wjA1d4mNAlIaUUpRoFU3oA2gWR0Cgs9kMb3oLdX2UKGgGaAloD0MIEVX4M7yVX0CUhpRSlGgVTegDaBZHQKC6XLkjopx1fZQoaAZoCWgPQwgY0At3Ll9iQJSGlFKUaBVN6ANoFkdAoLvIBaLXMHV9lChoBmgJaA9DCBA8vr3rgGNAlIaUUpRoFU3oA2gWR0CgvXf/m1YydX2UKGgGaAloD0MIQNmUK7yhZECUhpRSlGgVTegDaBZHQKC96g2ZRbd1fZQoaAZoCWgPQwhhMlUwqttkQJSGlFKUaBVN6ANoFkdAoMAtDIBBA3V9lChoBmgJaA9DCOVEuwopS2NAlIaUUpRoFU3oA2gWR0CgwZ8baRISdX2UKGgGaAloD0MICI7LuCmhYkCUhpRSlGgVTegDaBZHQKDFCAz544Z1fZQoaAZoCWgPQwiIvOXqx0VfQJSGlFKUaBVN6ANoFkdAoMXsvqTr3XV9lChoBmgJaA9DCAyuuaN/bmdAlIaUUpRoFU3oA2gWR0CgxqzPSlWPdX2UKGgGaAloD0MIaxFRTN6mYkCUhpRSlGgVTegDaBZHQKDHMoIfKZF1fZQoaAZoCWgPQwjL9iFvOWZnQJSGlFKUaBVN6ANoFkdAoMhihUR3/3V9lChoBmgJaA9DCGjqdYvAYWZAlIaUUpRoFU3oA2gWR0CgytdhiLEUdX2UKGgGaAloD0MISl6dY0DJYECUhpRSlGgVTegDaBZHQKDXnrgwXZZ1fZQoaAZoCWgPQwg8wJMWLrJeQJSGlFKUaBVN6ANoFkdAoNe93dKujnV9lChoBmgJaA9DCPCl8KBZGGBAlIaUUpRoFU3oA2gWR0Cg2bq9oN/fdX2UKGgGaAloD0MITTCcaxg/YECUhpRSlGgVTegDaBZHQKDfyKvV3EB1fZQoaAZoCWgPQwgAdJgvr3JmQJSGlFKUaBVN6ANoFkdAoOh263AmA3V9lChoBmgJaA9DCJAQ5Qtar2NAlIaUUpRoFU3oA2gWR0Cg6nYOMERrdX2UKGgGaAloD0MIIa0x6ISKYECUhpRSlGgVTegDaBZHQKDsbL7oB7x1fZQoaAZoCWgPQwgB28GIfTBgQJSGlFKUaBVN6ANoFkdAoOzU+7lJYnV9lChoBmgJaA9DCL6jxoQYKWZAlIaUUpRoFU3oA2gWR0Cg7xXGwRoRdX2UKGgGaAloD0MI9Ix9ycYZXECUhpRSlGgVTegDaBZHQKDwcemvW6N1fZQoaAZoCWgPQwh7oBUYshpiQJSGlFKUaBVN6ANoFkdAoPL5paiblXV9lChoBmgJaA9DCFK5iVoaMGdAlIaUUpRoFU3oA2gWR0Cg85H6MzdldX2UKGgGaAloD0MIxv1HpsNJYECUhpRSlGgVTegDaBZHQKD0Dul41P51fZQoaAZoCWgPQwiVuflG9PJlQJSGlFKUaBVN6ANoFkdAoPRjJhfBvnV9lChoBmgJaA9DCKSJd4Cn0mNAlIaUUpRoFU3oA2gWR0Cg9ScPe54GdX2UKGgGaAloD0MIpWWk3tM7ZUCUhpRSlGgVTegDaBZHQKD2nPDYRNB1fZQoaAZoCWgPQwhrgNJQIw1lQJSGlFKUaBVN6ANoFkdAoQNocghbGHV9lChoBmgJaA9DCMS12sNe1mVAlIaUUpRoFU3oA2gWR0ChA5ND+irUdX2UKGgGaAloD0MIRG6GG3AkYkCUhpRSlGgVTegDaBZHQKEGDsTFl051fZQoaAZoCWgPQwjx2To4WPhtQJSGlFKUaBVNTgJoFkdAoQkLvCuU2XV9lChoBmgJaA9DCNo391cPMGJAlIaUUpRoFU3oA2gWR0ChDKHJkoWpdX2UKGgGaAloD0MIXRlUGxzdZUCUhpRSlGgVTegDaBZHQKETMufVZs91fZQoaAZoCWgPQwimK9hGPHliQJSGlFKUaBVN6ANoFkdAoRTR6MR6GHV9lChoBmgJaA9DCOkrSDOWsWNAlIaUUpRoFU3oA2gWR0ChFwAMUh3adX2UKGgGaAloD0MIrtNIS2VpYECUhpRSlGgVTegDaBZHQKEZOeDnNgV1fZQoaAZoCWgPQwgoRSv3AkdmQJSGlFKUaBVN6ANoFkdAoRqcTtb9qHV9lChoBmgJaA9DCFKZYg4Cq2RAlIaUUpRoFU3oA2gWR0ChHUUgB91EdX2UKGgGaAloD0MINdO9TmqtZECUhpRSlGgVTegDaBZHQKEeMZof0Vd1fZQoaAZoCWgPQwiY32kyY6tkQJSGlFKUaBVN6ANoFkdAoR7v4O+ZgHV9lChoBmgJaA9DCLXeb7RjA2VAlIaUUpRoFU3oA2gWR0ChH25dGAkLdX2UKGgGaAloD0MIrTB9r6GnZUCUhpRSlGgVTegDaBZHQKEgiS3b2151fZQoaAZoCWgPQwjYYUz6+zxlQJSGlFKUaBVN6ANoFkdAoSK90cOsk3V9lChoBmgJaA9DCMfw2M9ioGRAlIaUUpRoFU3oA2gWR0ChJWoysS00dX2UKGgGaAloD0MIA5Xx77M9Z0CUhpRSlGgVTegDaBZHQKElkRGtp251ZS4="
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 248,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
dv_ppo_lunarlander/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9ae8be51aceffda4e77a431c99bebfcfe1a775aa3554e2e7a6320ce6ca25746e
3
+ size 87929
dv_ppo_lunarlander/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1979d57590765018f9275d1af2c66d17131f58d1c95c71f68e1ca2be3e8e9e3e
3
+ size 43393
dv_ppo_lunarlander/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
dv_ppo_lunarlander/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
replay.mp4 ADDED
Binary file (205 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 245.38852651418856, "std_reward": 34.233915804643345, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-06T02:33:13.740970"}