ONNX convert of distiluse-base-multilingual-cased-v2

Conversion of sentence-transformers/distiluse-base-multilingual-cased-v2

This is a sentence-transformers ONNX model: It maps sentences & paragraphs to a 512 dimensional dense vector space and can be used for tasks like clustering or semantic search. This custom model outputs last_hidden_state similar like original sentence-transformer implementation.

Usage (HuggingFace Optimum)

Using this model becomes easy when you have optimum installed:

python -m pip install optimum

You may also need following:

python -m pip install onnxruntime
python -m pip install onnx

Then you can use the model like this:

from optimum.onnxruntime.modeling_ort import ORTModelForCustomTasks

model = ORTModelForCustomTasks.from_pretrained("lorenpe2/distiluse-base-multilingual-cased-v2")
tokenizer = AutoTokenizer.from_pretrained("lorenpe2/distiluse-base-multilingual-cased-v2")
inputs = tokenizer("I love burritos!", return_tensors="pt")
pred = model(**inputs)

You will also be able to leverage the pipeline API in transformers:

from transformers import pipeline

onnx_extractor = pipeline("feature-extraction", model=model, tokenizer=tokenizer)
text = "I love burritos!"
pred = onnx_extractor(text)

Evaluation Results

For an automated evaluation of this model, see the Sentence Embeddings Benchmark: https://seb.sbert.net

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: DistilBertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
  (2): Dense({'in_features': 768, 'out_features': 512, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
)

Citing & Authors

This model was trained by sentence-transformers.

If you find this model helpful, feel free to cite our publication Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks:

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "http://arxiv.org/abs/1908.10084",
}
Downloads last month
10
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.