metadata
base_model: openai/whisper-small
datasets:
- lord-reso/inbrowser-proctor-dataset
language:
- en
library_name: peft
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: Whisper-Small-Inbrowser-Proctor-LORA
results: []
Whisper-Small-Inbrowser-Proctor-LORA
This model is a fine-tuned version of openai/whisper-small on the Inbrowser Procotor Dataset dataset. It achieves the following results on the evaluation set:
- eval_loss: 0.3714
- eval_wer: 20.6913
- eval_runtime: 58.8679
- eval_samples_per_second: 1.189
- eval_steps_per_second: 0.153
- epoch: 9.8214
- step: 275
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- training_steps: 500
- mixed_precision_training: Native AMP
Framework versions
- PEFT 0.12.1.dev0
- Transformers 4.45.0.dev0
- Pytorch 2.4.1+cu121
- Datasets 3.0.0
- Tokenizers 0.19.1