|
import transformers |
|
import datasets |
|
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM |
|
from datasets import load_dataset # if loading a dataset |
|
|
|
|
|
model_name = 'logicreasoning/LogiT5' |
|
tokenize = AutoTokenizer.from_pretrained(model_name) |
|
model = AutoModelForSeq2SeqLM.from_pretrained(model_name) |
|
device = 'cuda:0' if torch.cuda.is_available() else 'cpu' |
|
input_text = '' #your input text here must be a string |
|
input = tokenize(input_text, return_tensors='pt', padding=True).to(device) |
|
model = model.to(device) |
|
output = model.generate(*input, max_length=1024) |
|
prediction = tokenize.decode(output[0],skip_special_tokens=True) |