loganhart's picture
End of training
916ebf3 verified
metadata
license: apache-2.0
base_model: facebook/wav2vec2-base-960h
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: wav2vec2-large-xlsr-quality-daps
    results: []

wav2vec2-large-xlsr-quality-daps

This model is a fine-tuned version of facebook/wav2vec2-base-960h on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0289
  • Accuracy: 0.9956

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 128
  • eval_batch_size: 128
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 512
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.6868 0.9630 13 0.6218 0.9595
0.6219 2.0 27 0.3568 0.9947
0.2823 2.9630 40 0.1729 0.9947
0.1789 4.0 54 0.0902 0.9947
0.1154 4.9630 67 0.0586 0.9952
0.063 6.0 81 0.0421 0.9960
0.0412 6.9630 94 0.0357 0.9960
0.0412 8.0 108 0.0395 0.9934
0.0376 8.9630 121 0.0312 0.9956
0.0248 10.0 135 0.0296 0.9960
0.0384 10.9630 148 0.0298 0.9952
0.0267 12.0 162 0.0319 0.9943
0.0244 12.9630 175 0.0307 0.9947
0.0197 14.0 189 0.0289 0.9956
0.023 14.4444 195 0.0289 0.9956

Framework versions

  • Transformers 4.40.1
  • Pytorch 2.3.0
  • Datasets 2.12.0
  • Tokenizers 0.19.1