OpenAssistant SFT 7 LLaMA 30B ggml

From: https://huggingface.co/OpenAssistant/oasst-sft-7-llama-30b-xor


Original llama.cpp quant methods: q4_0, q4_1, q5_0, q5_1, q8_0

Quantized using an older version of llama.cpp and compatible with llama.cpp from May 19, commit 2d5db48.

k-quant methods: q2_K, q3_K_S, q3_K_M, q3_K_L, q4_K_S, q4_K_M, q5_K_S, q6_K

Quantization methods compatible with latest llama.cpp from June 6, commit 2d43387.


Provided files

Name Quant method Bits Size Max RAM required Use case
OpenAssistant-SFT-7-Llama-30B.ggmlv3.q2_K.bin q2_K 2 13.60 GB 16.10 GB New k-quant method. Uses GGML_TYPE_Q4_K for the attention.vw and feed_forward.w2 tensors, GGML_TYPE_Q2_K for the other tensors.
OpenAssistant-SFT-7-Llama-30B.ggmlv3.q3_K_L.bin q3_K_L 3 17.20 GB 19.70 GB New k-quant method. Uses GGML_TYPE_Q5_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K
OpenAssistant-SFT-7-Llama-30B.ggmlv3.q3_K_M.bin q3_K_M 3 15.64 GB 18.14 GB New k-quant method. Uses GGML_TYPE_Q4_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K
OpenAssistant-SFT-7-Llama-30B.ggmlv3.q3_K_S.bin q3_K_S 3 13.98 GB 16.48 GB New k-quant method. Uses GGML_TYPE_Q3_K for all tensors
OpenAssistant-SFT-7-Llama-30B.ggmlv3.q4_0.bin q4_0 4 18.30 GB 20.80 GB Original llama.cpp quant method, 4-bit.
OpenAssistant-SFT-7-Llama-30B.ggmlv3.q4_K_M.bin q4_K_M 4 19.57 GB 22.07 GB New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q4_K
OpenAssistant-SFT-7-Llama-30B.ggmlv3.q4_K_S.bin q4_K_S 4 18.30 GB 20.80 GB New k-quant method. Uses GGML_TYPE_Q4_K for all tensors
OpenAssistant-SFT-7-Llama-30B.ggmlv3.q5_0.bin q5_0 5 22.37 GB 24.87 GB Original llama.cpp quant method, 5-bit. Higher accuracy, higher resource usage and slower inference.
OpenAssistant-SFT-7-Llama-30B.ggmlv3.q5_1.bin q5_1 5 24.40 GB 26.90 GB Original llama.cpp quant method, 5-bit. Even higher accuracy, resource usage and slower inference.
OpenAssistant-SFT-7-Llama-30B.ggmlv3.q5_K_M.bin q5_K_M 5 23.02 GB 25.52 GB New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q5_K
OpenAssistant-SFT-7-Llama-30B.ggmlv3.q5_K_S.bin q5_K_S 5 22.37 GB 24.87 GB New k-quant method. Uses GGML_TYPE_Q5_K for all tensors
OpenAssistant-SFT-7-Llama-30B.ggmlv3.q6_K.bin q6_K 6 26.69 GB 29.19 GB New k-quant method. Uses GGML_TYPE_Q8_K - 6-bit quantization - for all tensors

OpenAssistant LLaMA 30B SFT 7

Configuration

llama-30b-sft-7:
  dtype: fp16
  log_dir: "llama_log_30b"
  learning_rate: 1e-5
  model_name: /home/ubuntu/Open-Assistant/model/model_training/.saved/llama-30b-super-pretrain/checkpoint-3500
  #model_name: OpenAssistant/llama-30b-super-pretrain
  output_dir: llama_model_30b
  deepspeed_config: configs/zero3_config_sft.json
  weight_decay: 0.0
  residual_dropout: 0.0
  max_length: 2048
  use_flash_attention: true
  warmup_steps: 20
  gradient_checkpointing: true
  gradient_accumulation_steps: 12
  per_device_train_batch_size: 2
  per_device_eval_batch_size: 3
  eval_steps: 101
  save_steps: 485
  num_train_epochs: 4
  save_total_limit: 3
  use_custom_sampler: true
  sort_by_length: false
  #save_strategy: steps
  save_strategy: epoch
  datasets:
    - oasst_export:
        lang: "bg,ca,cs,da,de,en,es,fr,hr,hu,it,nl,pl,pt,ro,ru,sl,sr,sv,uk"
        input_file_path: 2023-04-12_oasst_release_ready_synth.jsonl.gz
        val_split: 0.05
    - vicuna:
        val_split: 0.05
        max_val_set: 800
        fraction: 1.0
    - dolly15k:
        val_split: 0.05
        max_val_set: 300
    - grade_school_math_instructions:
        val_split: 0.05
    - code_alpaca:
        val_split: 0.05
        max_val_set: 250
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference API
Unable to determine this model's library. Check the docs .