Model Card of lmqg/mt5-small-ruquad-qg
This model is fine-tuned version of google/mt5-small for question generation task on the lmqg/qg_ruquad (dataset_name: default) via lmqg
.
Overview
- Language model: google/mt5-small
- Language: ru
- Training data: lmqg/qg_ruquad (default)
- Online Demo: https://autoqg.net/
- Repository: https://github.com/asahi417/lm-question-generation
- Paper: https://arxiv.org/abs/2210.03992
Usage
- With
lmqg
from lmqg import TransformersQG
# initialize model
model = TransformersQG(language="ru", model="lmqg/mt5-small-ruquad-qg")
# model prediction
questions = model.generate_q(list_context="Нелишним будет отметить, что, развивая это направление, Д. И. Менделеев, поначалу априорно выдвинув идею о температуре, при которой высота мениска будет нулевой, в мае 1860 года провёл серию опытов.", list_answer="в мае 1860 года")
- With
transformers
from transformers import pipeline
pipe = pipeline("text2text-generation", "lmqg/mt5-small-ruquad-qg")
output = pipe("Нелишним будет отметить, что, развивая это направление, Д. И. Менделеев, поначалу априорно выдвинув идею о температуре, при которой высота мениска будет нулевой, <hl> в мае 1860 года <hl> провёл серию опытов.")
Evaluation
- Metric (Question Generation): raw metric file
Score | Type | Dataset | |
---|---|---|---|
BERTScore | 84.27 | default | lmqg/qg_ruquad |
Bleu_1 | 31.03 | default | lmqg/qg_ruquad |
Bleu_2 | 24.58 | default | lmqg/qg_ruquad |
Bleu_3 | 19.92 | default | lmqg/qg_ruquad |
Bleu_4 | 16.31 | default | lmqg/qg_ruquad |
METEOR | 26.39 | default | lmqg/qg_ruquad |
MoverScore | 62.49 | default | lmqg/qg_ruquad |
ROUGE_L | 31.39 | default | lmqg/qg_ruquad |
- Metric (Question & Answer Generation, Reference Answer): Each question is generated from the gold answer. raw metric file
Score | Type | Dataset | |
---|---|---|---|
QAAlignedF1Score (BERTScore) | 90.17 | default | lmqg/qg_ruquad |
QAAlignedF1Score (MoverScore) | 68.22 | default | lmqg/qg_ruquad |
QAAlignedPrecision (BERTScore) | 90.17 | default | lmqg/qg_ruquad |
QAAlignedPrecision (MoverScore) | 68.23 | default | lmqg/qg_ruquad |
QAAlignedRecall (BERTScore) | 90.16 | default | lmqg/qg_ruquad |
QAAlignedRecall (MoverScore) | 68.21 | default | lmqg/qg_ruquad |
- Metric (Question & Answer Generation, Pipeline Approach): Each question is generated on the answer generated by
lmqg/mt5-small-ruquad-ae
. raw metric file
Score | Type | Dataset | |
---|---|---|---|
QAAlignedF1Score (BERTScore) | 76.96 | default | lmqg/qg_ruquad |
QAAlignedF1Score (MoverScore) | 55.53 | default | lmqg/qg_ruquad |
QAAlignedPrecision (BERTScore) | 73.41 | default | lmqg/qg_ruquad |
QAAlignedPrecision (MoverScore) | 53.24 | default | lmqg/qg_ruquad |
QAAlignedRecall (BERTScore) | 81.05 | default | lmqg/qg_ruquad |
QAAlignedRecall (MoverScore) | 58.25 | default | lmqg/qg_ruquad |
Training hyperparameters
The following hyperparameters were used during fine-tuning:
- dataset_path: lmqg/qg_ruquad
- dataset_name: default
- input_types: ['paragraph_answer']
- output_types: ['question']
- prefix_types: None
- model: google/mt5-small
- max_length: 512
- max_length_output: 32
- epoch: 5
- batch: 64
- lr: 0.001
- fp16: False
- random_seed: 1
- gradient_accumulation_steps: 1
- label_smoothing: 0.15
The full configuration can be found at fine-tuning config file.
Citation
@inproceedings{ushio-etal-2022-generative,
title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
author = "Ushio, Asahi and
Alva-Manchego, Fernando and
Camacho-Collados, Jose",
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2022",
address = "Abu Dhabi, U.A.E.",
publisher = "Association for Computational Linguistics",
}
- Downloads last month
- 28
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Dataset used to train lmqg/mt5-small-ruquad-qg
Evaluation results
- BLEU4 (Question Generation) on lmqg/qg_ruquadself-reported16.310
- ROUGE-L (Question Generation) on lmqg/qg_ruquadself-reported31.390
- METEOR (Question Generation) on lmqg/qg_ruquadself-reported26.390
- BERTScore (Question Generation) on lmqg/qg_ruquadself-reported84.270
- MoverScore (Question Generation) on lmqg/qg_ruquadself-reported62.490
- QAAlignedF1Score-BERTScore (Question & Answer Generation (with Gold Answer)) [Gold Answer] on lmqg/qg_ruquadself-reported90.170
- QAAlignedRecall-BERTScore (Question & Answer Generation (with Gold Answer)) [Gold Answer] on lmqg/qg_ruquadself-reported90.160
- QAAlignedPrecision-BERTScore (Question & Answer Generation (with Gold Answer)) [Gold Answer] on lmqg/qg_ruquadself-reported90.170
- QAAlignedF1Score-MoverScore (Question & Answer Generation (with Gold Answer)) [Gold Answer] on lmqg/qg_ruquadself-reported68.220
- QAAlignedRecall-MoverScore (Question & Answer Generation (with Gold Answer)) [Gold Answer] on lmqg/qg_ruquadself-reported68.210