|
|
|
--- |
|
license: cc-by-4.0 |
|
metrics: |
|
- bleu4 |
|
- meteor |
|
- rouge-l |
|
- bertscore |
|
- moverscore |
|
language: ko |
|
datasets: |
|
- lmqg/qg_koquad |
|
pipeline_tag: text2text-generation |
|
tags: |
|
- question generation |
|
- answer extraction |
|
widget: |
|
- text: "generate question: 1990년 영화 《 <hl> 남부군 <hl> 》에서 단역으로 영화배우 첫 데뷔에 이어 같은 해 KBS 드라마 《지구인》에서 단역으로 출연하였고 이듬해 MBC 《여명의 눈동자》를 통해 단역으로 출연하였다." |
|
example_title: "Question Generation Example 1" |
|
- text: "generate question: 백신이 없기때문에 예방책은 <hl> 살충제 <hl> 를 사용하면서 서식 장소(찻찬 받침, 배수로, 고인 물의 열린 저장소, 버려진 타이어 등)의 수를 줄임으로써 매개체를 통제할 수 있다." |
|
example_title: "Question Generation Example 2" |
|
- text: "generate question: <hl> 원테이크 촬영 <hl> 이기 때문에 한 사람이 실수를 하면 처음부터 다시 찍어야 하는 상황이 발생한다." |
|
example_title: "Question Generation Example 3" |
|
- text: "extract answers: 또한 스피어스는 많은 새로운 여성 아티스트들에게 영향을 끼쳤는데, 대표적으로 데미 로바토, 케이티 페리, 크리스티니아 드바지, 레이디 가가, 리틀 부츠, 셀레나 고메즈 & 더씬, 픽시 로트 이 있다. 2007년 비욘세 놀스는 Total Request Live와의 인터뷰에서 '나는 브리트니를 사랑하고 팬이에요. 특히 새 앨범 Blackout을 좋아해요'라고 말했다. 린제이 로한은 '언제나 브리트니 스피어스에게 영감을 받는다. 학창시절 그녀처럼 타블로이드에 오르기를 꿈꿔왔다'고 말하며 롤 모델로 꼽았다. 스피어스는 현대 음악가들에게 음악적 영감으로 언급되기도 했다. <hl> 마일리 사이러스는 자신의 히트곡 Party in the U.S.A. 가 브리트니에게 영감과 영향을 받은 곡이라고 밝혔다. <hl> 베리 매닐로우의 앨범 15 Minutes 역시 브리트니에게 영감을 얻었다고 언급되었다." |
|
example_title: "Answer Extraction Example 1" |
|
- text: "extract answers: 지난 22일 아프리카TV는 BJ 철구가 서비스 정지 처분을 받았음을 밝혔다. 서비스 정지 처분을 사유는 철구가 10대 청소년에게 유해한 장면을 방송으로 내보냈기 때문이었다. 문제가 된 장면은 BJ 철구가 미성년자는 시청할 수 없게 하는 19세 시청 가능 설정을 하지 않은 채 흡연하는 모습을 여과 없이 드러낸 장면이다. 아프리카TV는 청소년 보호 정책의 '청소년들이 해로운 환경으로부터 보호받을 수 있도록 조치한다'라고 조항을 근거로 철구에게 서비스 정지 처분을 내렸다. 흡연 이외에 음주 방송 등도 19세 시청 가능 설정을 해야만 방송할 수 있다. <hl> 게다가 철구의 방송 정지 처분은 이번에 처음이 아니라 16번 째기 때문에 더욱더 논란이 되고 있다. <hl>" |
|
example_title: "Answer Extraction Example 2" |
|
model-index: |
|
- name: lmqg/mt5-small-koquad-qg-ae |
|
results: |
|
- task: |
|
name: Text2text Generation |
|
type: text2text-generation |
|
dataset: |
|
name: lmqg/qg_koquad |
|
type: default |
|
args: default |
|
metrics: |
|
- name: BLEU4 (Question Generation) |
|
type: bleu4_question_generation |
|
value: 10.91 |
|
- name: ROUGE-L (Question Generation) |
|
type: rouge_l_question_generation |
|
value: 25.83 |
|
- name: METEOR (Question Generation) |
|
type: meteor_question_generation |
|
value: 27.52 |
|
- name: BERTScore (Question Generation) |
|
type: bertscore_question_generation |
|
value: 83.4 |
|
- name: MoverScore (Question Generation) |
|
type: moverscore_question_generation |
|
value: 82.54 |
|
- name: QAAlignedF1Score-BERTScore (Question & Answer Generation (with Gold Answer)) |
|
type: qa_aligned_f1_score_bertscore_question_answer_generation_with_gold_answer |
|
value: 80.36 |
|
- name: QAAlignedRecall-BERTScore (Question & Answer Generation (with Gold Answer)) |
|
type: qa_aligned_recall_bertscore_question_answer_generation_with_gold_answer |
|
value: 83.72 |
|
- name: QAAlignedPrecision-BERTScore (Question & Answer Generation (with Gold Answer)) |
|
type: qa_aligned_precision_bertscore_question_answer_generation_with_gold_answer |
|
value: 77.34 |
|
- name: QAAlignedF1Score-MoverScore (Question & Answer Generation (with Gold Answer)) |
|
type: qa_aligned_f1_score_moverscore_question_answer_generation_with_gold_answer |
|
value: 82.55 |
|
- name: QAAlignedRecall-MoverScore (Question & Answer Generation (with Gold Answer)) |
|
type: qa_aligned_recall_moverscore_question_answer_generation_with_gold_answer |
|
value: 86.69 |
|
- name: QAAlignedPrecision-MoverScore (Question & Answer Generation (with Gold Answer)) |
|
type: qa_aligned_precision_moverscore_question_answer_generation_with_gold_answer |
|
value: 78.93 |
|
- name: BLEU4 (Answer Extraction) |
|
type: bleu4_answer_extraction |
|
value: 38.2 |
|
- name: ROUGE-L (Answer Extraction) |
|
type: rouge_l_answer_extraction |
|
value: 82.32 |
|
- name: METEOR (Answer Extraction) |
|
type: meteor_answer_extraction |
|
value: 59.91 |
|
- name: BERTScore (Answer Extraction) |
|
type: bertscore_answer_extraction |
|
value: 95.65 |
|
- name: MoverScore (Answer Extraction) |
|
type: moverscore_answer_extraction |
|
value: 94.61 |
|
- name: AnswerF1Score (Answer Extraction) |
|
type: answer_f1_score__answer_extraction |
|
value: 86.98 |
|
- name: AnswerExactMatch (Answer Extraction) |
|
type: answer_exact_match_answer_extraction |
|
value: 80.78 |
|
--- |
|
|
|
# Model Card of `lmqg/mt5-small-koquad-qg-ae` |
|
This model is fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) for question generation and answer extraction jointly on the [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation). |
|
|
|
|
|
### Overview |
|
- **Language model:** [google/mt5-small](https://huggingface.co/google/mt5-small) |
|
- **Language:** ko |
|
- **Training data:** [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) (default) |
|
- **Online Demo:** [https://autoqg.net/](https://autoqg.net/) |
|
- **Repository:** [https://github.com/asahi417/lm-question-generation](https://github.com/asahi417/lm-question-generation) |
|
- **Paper:** [https://arxiv.org/abs/2210.03992](https://arxiv.org/abs/2210.03992) |
|
|
|
### Usage |
|
- With [`lmqg`](https://github.com/asahi417/lm-question-generation#lmqg-language-model-for-question-generation-) |
|
```python |
|
from lmqg import TransformersQG |
|
|
|
# initialize model |
|
model = TransformersQG(language="ko", model="lmqg/mt5-small-koquad-qg-ae") |
|
|
|
# model prediction |
|
question_answer_pairs = model.generate_qa("1990년 영화 《 남부군 》에서 단역으로 영화배우 첫 데뷔에 이어 같은 해 KBS 드라마 《지구인》에서 단역으로 출연하였고 이듬해 MBC 《여명의 눈동자》를 통해 단역으로 출연하였다.") |
|
|
|
``` |
|
|
|
- With `transformers` |
|
```python |
|
from transformers import pipeline |
|
|
|
pipe = pipeline("text2text-generation", "lmqg/mt5-small-koquad-qg-ae") |
|
|
|
# answer extraction |
|
answer = pipe("generate question: 1990년 영화 《 <hl> 남부군 <hl> 》에서 단역으로 영화배우 첫 데뷔에 이어 같은 해 KBS 드라마 《지구인》에서 단역으로 출연하였고 이듬해 MBC 《여명의 눈동자》를 통해 단역으로 출연하였다.") |
|
|
|
# question generation |
|
question = pipe("extract answers: 또한 스피어스는 많은 새로운 여성 아티스트들에게 영향을 끼쳤는데, 대표적으로 데미 로바토, 케이티 페리, 크리스티니아 드바지, 레이디 가가, 리틀 부츠, 셀레나 고메즈 & 더씬, 픽시 로트 이 있다. 2007년 비욘세 놀스는 Total Request Live와의 인터뷰에서 '나는 브리트니를 사랑하고 팬이에요. 특히 새 앨범 Blackout을 좋아해요'라고 말했다. 린제이 로한은 '언제나 브리트니 스피어스에게 영감을 받는다. 학창시절 그녀처럼 타블로이드에 오르기를 꿈꿔왔다'고 말하며 롤 모델로 꼽았다. 스피어스는 현대 음악가들에게 음악적 영감으로 언급되기도 했다. <hl> 마일리 사이러스는 자신의 히트곡 Party in the U.S.A. 가 브리트니에게 영감과 영향을 받은 곡이라고 밝혔다. <hl> 베리 매닐로우의 앨범 15 Minutes 역시 브리트니에게 영감을 얻었다고 언급되었다.") |
|
|
|
``` |
|
|
|
## Evaluation |
|
|
|
|
|
- ***Metric (Question Generation)***: [raw metric file](https://huggingface.co/lmqg/mt5-small-koquad-qg-ae/raw/main/eval/metric.first.sentence.paragraph_answer.question.lmqg_qg_koquad.default.json) |
|
|
|
| | Score | Type | Dataset | |
|
|:-----------|--------:|:--------|:-----------------------------------------------------------------| |
|
| BERTScore | 83.4 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) | |
|
| Bleu_1 | 25.91 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) | |
|
| Bleu_2 | 19.09 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) | |
|
| Bleu_3 | 14.37 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) | |
|
| Bleu_4 | 10.91 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) | |
|
| METEOR | 27.52 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) | |
|
| MoverScore | 82.54 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) | |
|
| ROUGE_L | 25.83 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) | |
|
|
|
|
|
- ***Metric (Question & Answer Generation)***: [raw metric file](https://huggingface.co/lmqg/mt5-small-koquad-qg-ae/raw/main/eval/metric.first.answer.paragraph.questions_answers.lmqg_qg_koquad.default.json) |
|
|
|
| | Score | Type | Dataset | |
|
|:--------------------------------|--------:|:--------|:-----------------------------------------------------------------| |
|
| QAAlignedF1Score (BERTScore) | 80.36 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) | |
|
| QAAlignedF1Score (MoverScore) | 82.55 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) | |
|
| QAAlignedPrecision (BERTScore) | 77.34 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) | |
|
| QAAlignedPrecision (MoverScore) | 78.93 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) | |
|
| QAAlignedRecall (BERTScore) | 83.72 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) | |
|
| QAAlignedRecall (MoverScore) | 86.69 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) | |
|
|
|
|
|
- ***Metric (Answer Extraction)***: [raw metric file](https://huggingface.co/lmqg/mt5-small-koquad-qg-ae/raw/main/eval/metric.first.answer.paragraph_sentence.answer.lmqg_qg_koquad.default.json) |
|
|
|
| | Score | Type | Dataset | |
|
|:-----------------|--------:|:--------|:-----------------------------------------------------------------| |
|
| AnswerExactMatch | 80.78 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) | |
|
| AnswerF1Score | 86.98 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) | |
|
| BERTScore | 95.65 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) | |
|
| Bleu_1 | 75.14 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) | |
|
| Bleu_2 | 66.16 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) | |
|
| Bleu_3 | 53.61 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) | |
|
| Bleu_4 | 38.2 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) | |
|
| METEOR | 59.91 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) | |
|
| MoverScore | 94.61 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) | |
|
| ROUGE_L | 82.32 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) | |
|
|
|
|
|
|
|
## Training hyperparameters |
|
|
|
The following hyperparameters were used during fine-tuning: |
|
- dataset_path: lmqg/qg_koquad |
|
- dataset_name: default |
|
- input_types: ['paragraph_answer', 'paragraph_sentence'] |
|
- output_types: ['question', 'answer'] |
|
- prefix_types: ['qg', 'ae'] |
|
- model: google/mt5-small |
|
- max_length: 512 |
|
- max_length_output: 32 |
|
- epoch: 6 |
|
- batch: 16 |
|
- lr: 0.001 |
|
- fp16: False |
|
- random_seed: 1 |
|
- gradient_accumulation_steps: 4 |
|
- label_smoothing: 0.15 |
|
|
|
The full configuration can be found at [fine-tuning config file](https://huggingface.co/lmqg/mt5-small-koquad-qg-ae/raw/main/trainer_config.json). |
|
|
|
## Citation |
|
``` |
|
@inproceedings{ushio-etal-2022-generative, |
|
title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration", |
|
author = "Ushio, Asahi and |
|
Alva-Manchego, Fernando and |
|
Camacho-Collados, Jose", |
|
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing", |
|
month = dec, |
|
year = "2022", |
|
address = "Abu Dhabi, U.A.E.", |
|
publisher = "Association for Computational Linguistics", |
|
} |
|
|
|
``` |
|
|