Model Card of lmqg/mt5-small-esquad-ae

This model is fine-tuned version of google/mt5-small for answer extraction on the lmqg/qg_esquad (dataset_name: default) via lmqg.

Overview

Usage

from lmqg import TransformersQG

# initialize model
model = TransformersQG(language="es", model="lmqg/mt5-small-esquad-ae")

# model prediction
answers = model.generate_a("a noviembre , que es también la estación lluviosa.")
  • With transformers
from transformers import pipeline

pipe = pipeline("text2text-generation", "lmqg/mt5-small-esquad-ae")
output = pipe("<hl> En la diáspora somalí, múltiples eventos islámicos de recaudación de fondos se llevan a cabo cada año en ciudades como Birmingham, Londres, Toronto y Minneapolis, donde los académicos y profesionales somalíes dan conferencias y responden preguntas de la audiencia. <hl> El propósito de estos eventos es recaudar dinero para nuevas escuelas o universidades en Somalia, para ayudar a los somalíes que han sufrido como consecuencia de inundaciones y / o sequías, o para reunir fondos para la creación de nuevas mezquitas como.")

Evaluation

Score Type Dataset
AnswerExactMatch 56.14 default lmqg/qg_esquad
AnswerF1Score 73.93 default lmqg/qg_esquad
BERTScore 89.86 default lmqg/qg_esquad
Bleu_1 36.7 default lmqg/qg_esquad
Bleu_2 31.79 default lmqg/qg_esquad
Bleu_3 28.08 default lmqg/qg_esquad
Bleu_4 24.92 default lmqg/qg_esquad
METEOR 41.91 default lmqg/qg_esquad
MoverScore 80.26 default lmqg/qg_esquad
ROUGE_L 48.75 default lmqg/qg_esquad

Training hyperparameters

The following hyperparameters were used during fine-tuning:

  • dataset_path: lmqg/qg_esquad
  • dataset_name: default
  • input_types: ['paragraph_sentence']
  • output_types: ['answer']
  • prefix_types: None
  • model: google/mt5-small
  • max_length: 512
  • max_length_output: 32
  • epoch: 13
  • batch: 32
  • lr: 0.0005
  • fp16: False
  • random_seed: 1
  • gradient_accumulation_steps: 2
  • label_smoothing: 0.15

The full configuration can be found at fine-tuning config file.

Citation

@inproceedings{ushio-etal-2022-generative,
    title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
    author = "Ushio, Asahi  and
        Alva-Manchego, Fernando  and
        Camacho-Collados, Jose",
    booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
    month = dec,
    year = "2022",
    address = "Abu Dhabi, U.A.E.",
    publisher = "Association for Computational Linguistics",
}
Downloads last month
16
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train lmqg/mt5-small-esquad-ae

Evaluation results