Model Card of lmqg/mt5-base-dequad-qag

This model is fine-tuned version of google/mt5-base for question & answer pair generation task on the lmqg/qag_dequad (dataset_name: default) via lmqg.

Overview

Usage

from lmqg import TransformersQG

# initialize model
model = TransformersQG(language="de", model="lmqg/mt5-base-dequad-qag")

# model prediction
question_answer_pairs = model.generate_qa("das erste weltweit errichtete Hermann Brehmer 1855 im niederschlesischen ''Görbersdorf'' (heute Sokołowsko, Polen).")
  • With transformers
from transformers import pipeline

pipe = pipeline("text2text-generation", "lmqg/mt5-base-dequad-qag")
output = pipe("Empfangs- und Sendeantenne sollen in ihrer Polarisation übereinstimmen, andernfalls wird die Signalübertragung stark gedämpft. ")

Evaluation

Score Type Dataset
QAAlignedF1Score (BERTScore) 0.1 default lmqg/qag_dequad
QAAlignedF1Score (MoverScore) 0.1 default lmqg/qag_dequad
QAAlignedPrecision (BERTScore) 0.1 default lmqg/qag_dequad
QAAlignedPrecision (MoverScore) 0.1 default lmqg/qag_dequad
QAAlignedRecall (BERTScore) 0.1 default lmqg/qag_dequad
QAAlignedRecall (MoverScore) 0.1 default lmqg/qag_dequad

Training hyperparameters

The following hyperparameters were used during fine-tuning:

  • dataset_path: lmqg/qag_dequad
  • dataset_name: default
  • input_types: ['paragraph']
  • output_types: ['questions_answers']
  • prefix_types: None
  • model: google/mt5-base
  • max_length: 512
  • max_length_output: 256
  • epoch: 11
  • batch: 2
  • lr: 0.0001
  • fp16: False
  • random_seed: 1
  • gradient_accumulation_steps: 32
  • label_smoothing: 0.15

The full configuration can be found at fine-tuning config file.

Citation

@inproceedings{ushio-etal-2022-generative,
    title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
    author = "Ushio, Asahi  and
        Alva-Manchego, Fernando  and
        Camacho-Collados, Jose",
    booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
    month = dec,
    year = "2022",
    address = "Abu Dhabi, U.A.E.",
    publisher = "Association for Computational Linguistics",
}
Downloads last month
12
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train lmqg/mt5-base-dequad-qag

Evaluation results

  • QAAlignedF1Score-BERTScore (Question & Answer Generation) on lmqg/qag_dequad
    self-reported
    0.100
  • QAAlignedRecall-BERTScore (Question & Answer Generation) on lmqg/qag_dequad
    self-reported
    0.100
  • QAAlignedPrecision-BERTScore (Question & Answer Generation) on lmqg/qag_dequad
    self-reported
    0.100
  • QAAlignedF1Score-MoverScore (Question & Answer Generation) on lmqg/qag_dequad
    self-reported
    0.100
  • QAAlignedRecall-MoverScore (Question & Answer Generation) on lmqg/qag_dequad
    self-reported
    0.100
  • QAAlignedPrecision-MoverScore (Question & Answer Generation) on lmqg/qag_dequad
    self-reported
    0.100