slim-summary-tool / README.md
doberst's picture
Update README.md
d6aedab verified
---
license: cc-by-sa-4.0
---
# SLIM-SUMMARY-TOOL
<!-- Provide a quick summary of what the model is/does. -->
**slim-summary-tool** is a 4_K_M quantized GGUF version of slim-summary, providing a small, fast inference implementation, to provide high-quality summarizations of complex business documents, on a small, specialized locally-deployable model with summary output structured as a python list of key points.
The size of the self-contained GGUF model binary is 1.71 GB, which is small enough to run locally on a CPU with reasonable inference speed, and has been designed to balance high-quality with the ability to deploy on a local machine.
The model takes as input a text passage, an optional parameter with a focusing phrase or query, and an experimental optional (N) parameter, which is used to guide the model to a specific number of items return in a summary list.
Please see the usage notes at: [**slim-summary**](https://huggingface.co/llmware/slim-summary)
To pull the model via API:
from huggingface_hub import snapshot_download
snapshot_download("llmware/slim-summary-tool", local_dir="/path/on/your/machine/", local_dir_use_symlinks=False)
Load in your favorite GGUF inference engine, or try with llmware as follows:
from llmware.models import ModelCatalog
# to load the model and make a basic inference
model = ModelCatalog().load_model("slim-summary-tool")
response = model.function_call(text_sample)
# this one line will download the model and run a series of tests
ModelCatalog().tool_test_run("slim-summary-tool", verbose=True)
Note: please review [**config.json**](https://huggingface.co/llmware/slim-summary-tool/blob/main/config.json) in the repository for prompt wrapping information, details on the model, and full test set.
## Model Card Contact
Darren Oberst & llmware team
[Any questions? Join us on Discord](https://discord.gg/MhZn5Nc39h)