File size: 24,664 Bytes
312e8ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519

""" Core wrapper patching class on mllama-11b OV - excludes all conversion components - and is only for inference.



    -- Generation loop flows through GenerationMixin - will need to remove torch + transformers

"""

from pathlib import Path
from transformers import AutoConfig, GenerationConfig

from typing import Optional, Union, List, Tuple, Dict
from transformers.generation import GenerationMixin
from transformers.modeling_outputs import ModelOutput
import openvino.runtime.opset13 as ops
import openvino as ov
import torch
import numpy as np
from dataclasses import dataclass
from openvino.runtime.passes import Manager, MatcherPass, WrapType, Matcher
import time

core = ov.Core()

LANGUAGE_MODEL = "llm_int4_asym_r10_gs64_max_activation_variance_scale_all_layers.xml"
IMAGE_ENCODER = "openvino_vision_encoder_int8.xml"

@dataclass
class MLlamaOutputWithPast(ModelOutput):
    loss: Optional[torch.FloatTensor] = None
    logits: torch.FloatTensor = None
    past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
    hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
    attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
    cross_attn_key_values: Optional[List[torch.FloatTensor]] = None


class InsertSlice(MatcherPass):
    def __init__(self):
        MatcherPass.__init__(self)
        self.model_changed = False

        param = WrapType("opset10.Result")

        def callback(matcher: Matcher) -> bool:
            root = matcher.get_match_root()
            if root is None:
                return False
            if len(root.get_output_partial_shape(0)) == 3:
                parent = root.input_value(0).get_node()
                grand_parent = parent.input_value(0).get_node()

                grand_parent_output = parent.input(0).get_source_output()
                consumers = grand_parent_output.get_target_inputs()
                start = np.array([0, -1, 0], dtype=np.int32)
                stop = np.array([1, -2, grand_parent_output.get_partial_shape()[-1].get_length()], dtype=np.int32)
                step = np.array([1, -1, 1], dtype=np.int32)
                axes = np.array([0, 1, 2], dtype=np.int32)
                slice = ops.slice(grand_parent, start, stop, step, axes, name="inserted_slice")
                for consumer in consumers:
                    consumer.replace_source_output(slice.output(0))
                self.model_changed = True
                # Use new operation for additional matching
                self.register_new_node(slice)
                print("applied slice for lm head")

                return True

        self.register_matcher(Matcher(param, "InsertSlice"), callback)


STR_TO_OV_TYPE = {
    "boolean": ov.Type.boolean,
    "f16": ov.Type.f16,
    "f32": ov.Type.f32,
    "f64": ov.Type.f64,
    "i8": ov.Type.i8,
    "i16": ov.Type.i16,
    "i32": ov.Type.i32,
    "i64": ov.Type.i64,
    "u8": ov.Type.u8,
    "u16": ov.Type.u16,
    "u32": ov.Type.u32,
    "u64": ov.Type.u64,
    "bf16": ov.Type.bf16,
}


class OVMLlamaForConditionalGeneration(GenerationMixin):
    def __init__(

        self,

        model_dir: Union[str, Path],

        device: str = "CPU",

        ov_config: Optional[Dict[str, str]] = None,

        language_model_name=None,

        image_encoder_name=None,

        slice_lm_head=True,

        use_remote_tensors=True,

        dynamic_shape=False,

    ):
        model_dir = Path(model_dir)
        self.config = AutoConfig.from_pretrained(model_dir)
        self.generation_config = GenerationConfig.from_pretrained(model_dir)
        self.main_input_name = "input_ids"
        self.device = torch.device("cpu")
        self._device = device
        self.ov_config = ov_config
        self.num_pkv = 2
        self._supports_cache_class = False
        self.next_beam_idx = None
        self._past_length = None
        if language_model_name:
            self.model = core.read_model(model_dir / language_model_name)
        else:
            self.model = core.read_model(model_dir / LANGUAGE_MODEL)
        if image_encoder_name:
            self.vision_model = core.read_model(model_dir / image_encoder_name)
        else:
            self.vision_model = core.read_model(model_dir / IMAGE_ENCODER)
        if not dynamic_shape:
            self.reshape_vision_model()
        self.update_pkv_precision()
        if slice_lm_head:
            self.slice_lm_head()
        self.input_names = {key.get_any_name(): idx for idx, key in enumerate(self.model.inputs)}
        self.output_names = {key.get_any_name(): idx for idx, key in enumerate(self.model.outputs)}
        self.lm_cross_attn_inputs = [key for key in self.input_names if "cross_attn_key_values" in key]
        compiled_model = core.compile_model(self.model, device, ov_config)
        self.request = compiled_model.create_infer_request()
        self.cross_attn_outputs = [key.get_any_name() for key in self.vision_model.outputs if "cross_attn_key_values" in key.get_any_name()]
        compiled_vision_model = core.compile_model(self.vision_model, device, ov_config)
        self.vision_request = compiled_vision_model.create_infer_request()
        self.use_remote_tensors = use_remote_tensors and self._device == "GPU"
        if self.use_remote_tensors:
            self.prepare_remote_tensors()
        self.next_beam_idx = None
        self.num_patches = (self.config.vision_config.image_size // self.config.vision_config.patch_size) ** 2 + 1
        self._past_length = 0
        self.llm_infer_time = []
        self.vision_encoder_infer_time = []

    def _get_past_length(self, past_key_values=None):
        if past_key_values is None:
            return 0
        return self._past_length

    def reshape_vision_model(self):
        self.vision_model.reshape(
            {
                0: ov.PartialShape([1, 1, 4, 3, self.config.vision_config.image_size, self.config.vision_config.image_size]),
                1: ov.PartialShape([1, 1]),
                2: ov.PartialShape([1, 1, 4]),
            }
        )

    def update_pkv_precision(self, force_fp32=False):
        pkv_precision = ov.Type.f32
        if not force_fp32:
            device = self._device.upper()
            try:
                if "INFERENCE_PRECISION_HINT" in core.get_property(device, "SUPPORTED_PROPERTIES"):
                    pkv_precision = core.get_property(device, "INFERENCE_PRECISION_HINT")
            except RuntimeError:  # use default precision when get_property fails, e.g. when device is "AUTO:GPU"
                pass

            # ov_config["INFERENCE_PRECISION_HINT"] may override the prefer precision
            if self.ov_config:
                inference_precision_hint = self.ov_config.get("INFERENCE_PRECISION_HINT", "")
                if inference_precision_hint in STR_TO_OV_TYPE:
                    pkv_precision = STR_TO_OV_TYPE[inference_precision_hint]

            ppp = ov.preprocess.PrePostProcessor(self.model)
            for key in self.model.inputs:
                if "cross_attn_key_values" in key.get_any_name() and pkv_precision != key.get_element_type():
                    ppp.input(key.get_any_name()).tensor().set_element_type(pkv_precision)

            self.model = ppp.build()

            ppp_v = ov.preprocess.PrePostProcessor(self.vision_model)
            for key in self.vision_model.outputs:
                if "cross_attn_key_values" in key.get_any_name() and pkv_precision != key.get_element_type():
                    ppp_v.output(key.get_any_name()).tensor().set_element_type(pkv_precision)
            self.vision_model = ppp_v.build()
            self._pkv_precision = pkv_precision

    def slice_lm_head(self):
        manager = Manager()
        manager.register_pass(InsertSlice())
        manager.run_passes(self.model)
        self.model.validate_nodes_and_infer_types()

    def forward(

        self,

        input_ids: torch.LongTensor = None,

        pixel_values: Optional[torch.FloatTensor] = None,

        aspect_ratio_mask: Optional[List[List[int]]] = None,

        aspect_ratio_ids: Optional[torch.Tensor] = None,

        attention_mask: Optional[List[List[List[int]]]] = None,

        cross_attention_mask: Optional[torch.Tensor] = None,

        cross_attention_states: Optional[torch.Tensor] = None,

        position_ids: Optional[torch.LongTensor] = None,

        past_key_values: Optional[List[torch.FloatTensor]] = None,

        inputs_embeds: Optional[torch.FloatTensor] = None,

        labels: Optional[torch.LongTensor] = None,

        use_cache: Optional[bool] = None,

        output_attentions: Optional[bool] = None,

        output_hidden_states: Optional[bool] = None,

        return_dict: Optional[bool] = None,

        cache_position: Optional[torch.LongTensor] = None,

        cross_attn_key_values: Optional[List[torch.Tensor]] = None,

        num_logits_to_keep: int = 0,

    ) -> Union[Tuple, MLlamaOutputWithPast]:
        r"""

        Args:

            labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):

                Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,

                config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored

                (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.



            num_logits_to_keep (`int`, *optional*):

                Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all

                `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that

                token can save memory, which becomes pretty significant for long sequences or large vocabulary size.





        """

        if (input_ids is None) ^ (inputs_embeds is not None):
            raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one")

        if pixel_values is not None and inputs_embeds is not None:
            raise ValueError("You cannot specify both pixel_values and inputs_embeds at the same time, and must specify either one")

        if pixel_values is not None and cross_attention_states is not None:
            raise ValueError("`pixel_values` and `cross_attention_states` cannot be provided simultaneously")

        if pixel_values is not None:
            if aspect_ratio_ids is None:
                raise ValueError("`aspect_ratio_ids` must be provided if `pixel_values` is provided")
            # get vision tokens from vision model
            cross_attn_key_values = self.visual_encoder(pixel_values, aspect_ratio_ids, aspect_ratio_mask)
        cross_attention_mask, full_text_row_masked_out_mask = self._prepare_cross_attention_mask(
            cross_attention_mask,
            past_key_values=past_key_values,
            num_vision_tokens=self.num_patches,
            cross_attention_layers=cross_attn_key_values if past_key_values is not None else None,
            cross_attention_states=((),),
            device=self.device,
            dtype=torch.float32,
        )

        if cross_attention_mask is not None and cache_position is not None:
            cross_attention_mask = cross_attention_mask[:, :, cache_position]
            full_text_row_masked_out_mask = full_text_row_masked_out_mask[:, :, cache_position]

        return self.language_model(
            input_ids=input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            cross_attention_mask=cross_attention_mask,
            full_text_row_masked_out_mask=full_text_row_masked_out_mask,
            past_key_values=past_key_values,
            cache_position=cache_position,
            cross_attention_key_values=cross_attn_key_values,
        )

    def language_model(

        self,

        input_ids,

        attention_mask,

        position_ids,

        cross_attention_mask,

        full_text_row_masked_out_mask,

        past_key_values,

        cache_position,

        cross_attention_key_values,

    ):
        model_inputs = {
            "input_ids": ov.Tensor(np.array(input_ids)),
            "attention_mask": ov.Tensor(np.array(attention_mask)),
            "position_ids": ov.Tensor(np.array(position_ids)),
            "cross_attention_mask": ov.Tensor(np.array(cross_attention_mask)),
            "full_text_row_masked_out_mask": ov.Tensor(np.array(full_text_row_masked_out_mask)),
            "cache_position": ov.Tensor(np.array(cache_position)),
        }

        if past_key_values is None:
            self.request.reset_state()
            self.next_beam_idx = np.arange(input_ids.shape[0], dtype=int)
            self._past_length = 0
            self.llm_infer_time = []

        if not self.use_remote_tensors:
            model_inputs.update(dict(zip(self.lm_cross_attn_inputs, cross_attention_key_values)))
        if "beam_idx" in self.input_names:
            model_inputs["beam_idx"] = self.next_beam_idx if self.next_beam_idx is not None else np.arange(input_ids.shape[0], dtype=int)

        start = time.perf_counter()
        self.request.start_async(model_inputs, share_inputs=True)
        self.request.wait()
        end = time.perf_counter()
        self.llm_infer_time.append(end - start)
        logits = torch.from_numpy(self.request.get_tensor("logits").data)
        past_key_values = ((),)
        self._past_length += input_ids.shape[1]
        out = MLlamaOutputWithPast(logits=logits, past_key_values=past_key_values, cross_attn_key_values=cross_attention_key_values)
        return out

    def can_generate(self):
        """Returns True to validate the check that the model using `GenerationMixin.generate()` can indeed generate."""
        return True

    def __call__(self, *args, **kwargs) -> MLlamaOutputWithPast:
        return self.forward(
            *args,
            **kwargs,
        )

    def _reorder_cache(self, past_key_values: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor) -> Tuple[Tuple[torch.Tensor]]:
        """

        This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or

        [`~PreTrainedModel.beam_sample`] is called.

        This is required to match `past_key_values` with the correct beam_idx at every generation step.

        """
        self.next_beam_idx = np.array(beam_idx)  # save beam_idx to be used as an input in the next iteration
        return past_key_values

    def prepare_inputs_for_generation(

        self,

        input_ids=None,

        inputs_embeds=None,

        attention_mask=None,

        position_ids=None,

        pixel_values=None,

        aspect_ratio_ids=None,

        aspect_ratio_mask=None,

        cross_attention_mask=None,

        past_key_values=None,

        use_cache=False,

        cache_position=None,

        cross_attn_key_values=None,

        num_logits_to_keep=None,

        **kwargs,

    ):
        # If we have cache: let's slice `input_ids` through `cache_position`, to keep only the unprocessed tokens
        # Exception 1: when passing input_embeds, input_ids may be missing entries
        # Exception 2: some generation methods do special slicing of input_ids, so we don't need to do it here
        if past_key_values is not None:
            if inputs_embeds is not None:  # Exception 1
                input_ids = input_ids[:, -cache_position.shape[0] :]
            elif input_ids.shape[1] != cache_position.shape[0]:  # Default case (the "else", a no op, is Exception 2)
                input_ids = input_ids[:, cache_position]

        if attention_mask is not None and position_ids is None:
            # create position_ids on the fly for batch generation
            position_ids = attention_mask.long().cumsum(-1) - 1
            position_ids.masked_fill_(attention_mask == 0, 1)
            if past_key_values:
                position_ids = position_ids[:, -input_ids.shape[1] :]

        # The clone here is for the same reason as for `position_ids`.
        model_inputs = {"input_ids": input_ids, "inputs_embeds": None}

        if num_logits_to_keep is not None:
            model_inputs["num_logits_to_keep"] = num_logits_to_keep

        model_inputs.update(
            {
                "position_ids": position_ids,
                "cache_position": cache_position,
                "past_key_values": past_key_values,
                "use_cache": use_cache,
                "attention_mask": attention_mask,
                "cross_attention_mask": cross_attention_mask,
                "cross_attn_key_values": cross_attn_key_values,
            }
        )

        # If we're in pre-fill or cacheless decoding step, then we need pixel_values and aspect ratios
        # to compute image hidden states, otherwise they are cache/home/ea/llama3.2/Llama-3.2-11B-Vision-Early/OVd within each cross attn layer
        if (input_ids == self.config.image_token_index).any():
            model_inputs["pixel_values"] = pixel_values
            model_inputs["aspect_ratio_ids"] = aspect_ratio_ids
            model_inputs["aspect_ratio_mask"] = aspect_ratio_mask

        return model_inputs

    def _update_model_kwargs_for_generation(self, outputs, model_kwargs, is_encoder_decoder, **kwargs):
        cross_attention_mask_prev = model_kwargs.get("cross_attention_mask", None)
        model_kwargs = super()._update_model_kwargs_for_generation(
            outputs=outputs,
            model_kwargs=model_kwargs,
            is_encoder_decoder=is_encoder_decoder,
            **kwargs,
        )

        # add cross-attn mask for new token
        if cross_attention_mask_prev is not None:
            model_kwargs["cross_attention_mask"] = torch.cat([cross_attention_mask_prev, cross_attention_mask_prev[:, -1:, ...]], dim=1)
        model_kwargs["cross_attn_key_values"] = outputs.cross_attn_key_values
        return model_kwargs

    def _prepare_cross_attention_mask(

        self,

        cross_attention_mask: torch.Tensor,

        past_key_values: Tuple,

        num_vision_tokens: int,

        cross_attention_states: torch.Tensor,

        cross_attention_layers: List[int],

        device: str,

        dtype: str,

    ) -> Tuple[torch.Tensor, torch.Tensor]:
        if cross_attention_mask is None:
            # should we raise error or prepare a full attn mask with all ones?
            return None, None
        else:
            # reshape so it can be used by attn module
            batch_size, text_total_length, *_ = cross_attention_mask.shape
            cross_attention_mask = cross_attention_mask.repeat_interleave(num_vision_tokens, dim=3)
            cross_attention_mask = cross_attention_mask.view(batch_size, text_total_length, -1)
            cross_attention_mask = cross_attention_mask.unsqueeze(1)

        # invert the mask
        inverted_cross_attn_mask = (1.0 - cross_attention_mask).to(dtype)
        cross_attention_mask = inverted_cross_attn_mask.masked_fill(inverted_cross_attn_mask.to(torch.bool), torch.finfo(dtype).min)

        # apply full-row bias, which return 4D tensor of shape [B, H, S1, 1] where value is 0 if the a full row in cross attn mask's
        # last dimension contains negative infinity values, otherwise it's 1
        negative_inf_value = torch.finfo(dtype).min
        full_text_row_masked_out_mask = (cross_attention_mask != negative_inf_value).any(dim=-1).type_as(cross_attention_mask)[..., None]
        cross_attention_mask *= full_text_row_masked_out_mask

        # In case we receive a new image but already have previous cross-attention key/values in cache,
        # then we need to extend the attention-mask and add previous images' lengths
        if past_key_values is not None and cross_attention_states is not None and cross_attention_layers is not None:
            # make all zeros mask for cross-attn-mask from previuos cached hidden_states, all zeros right?
            # i.e. extend current cross-attn-mask on image-seq-length dimension to account for past_seen_tokens
            past_cross_attn_kv_length = cross_attention_layers[0].shape[-2]
            past_cross_attn_mask = torch.zeros((*cross_attention_mask.shape[:-1], past_cross_attn_kv_length), dtype=dtype, device=device)
            # concatenate both on image-seq-length dimension
            cross_attention_mask = torch.cat([past_cross_attn_mask, cross_attention_mask], dim=-1)

        return cross_attention_mask, full_text_row_masked_out_mask

    def visual_encoder(self, pixel_values, aspect_ratio_ids, aspect_ratio_mask):
        if pixel_values is not None:
            if aspect_ratio_ids is None:
                raise ValueError("`aspect_ratio_ids` must be provided if `pixel_values` is provided")
            self.vision_encoder_infer_time = []
            start = time.perf_counter()
            # get vision tokens from vision model
            self.vision_request.start_async([pixel_values, aspect_ratio_ids, aspect_ratio_mask], share_inputs=True)
            self.vision_request.wait()
            end = time.perf_counter()
            cross_attn_key_values = [self.vision_request.get_tensor(name) for name in self.cross_attn_outputs]
            self.vision_encoder_infer_time.append(end - start)
        return cross_attn_key_values

    def prepare_vision_outputs(self, pixel_values, aspect_ratio_ids, aspect_ratio_mask, cross_attention_mask=None, past_key_values=None, cache_position=None):
        cross_attn_key_values = self.visual_encoder(pixel_values, aspect_ratio_ids, aspect_ratio_mask)
        cross_attn_key_values = [v.data for v in cross_attn_key_values]
        cross_attention_mask, full_text_row_masked_out_mask = self._prepare_cross_attention_mask(
            cross_attention_mask,
            past_key_values=past_key_values,
            num_vision_tokens=self.num_patches,
            cross_attention_layers=cross_attn_key_values if past_key_values is not None else None,
            cross_attention_states=1,
            device=self.device,
            dtype=torch.float32,
        )

        if cross_attention_mask is not None and cache_position is not None:
            cross_attention_mask = cross_attention_mask[:, :, cache_position]
            full_text_row_masked_out_mask = full_text_row_masked_out_mask[:, :, cache_position]

        return {
            "cross_attention_mask": cross_attention_mask,
            "full_text_row_masked_out_mask": full_text_row_masked_out_mask,
            "past_key_values": past_key_values,
            "cache_position": cache_position,
            "cross_attention_key_values": cross_attn_key_values,
        }

    def prepare_llm_inputs(

        self,

        input_ids,

        attention_mask,

        position_ids,

        cross_attention_mask,

        full_text_row_masked_out_mask,

        past_key_values,

        cache_position,

        cross_attention_key_values,

    ):
        model_inputs = {
            "input_ids": input_ids,
            "attention_mask": attention_mask,
            "position_ids": position_ids,
            "cross_attention_mask": cross_attention_mask,
            "full_text_row_masked_out_mask": full_text_row_masked_out_mask,
            "cache_position": cache_position,
        }

        if past_key_values is None:
            self.request.reset_state()
            self.next_beam_idx = np.arange(input_ids.shape[0], dtype=int)
            self._past_length = 0

        model_inputs.update(dict(zip(self.lm_cross_attn_inputs, cross_attention_key_values)))
        if "beam_idx" in self.input_names:
            model_inputs["beam_idx"] = self.next_beam_idx if self.next_beam_idx is not None else np.arange(input_ids.shape[0], dtype=int)

        return model_inputs

    def prepare_remote_tensors(self):
        context = core.get_default_context("GPU")
        for idx, name in enumerate(self.lm_cross_attn_inputs):
            remote_tensor = context.create_tensor(ov.Type.f16, ov.Shape([1, 32, 6404, 128]), {})
            self.vision_request.set_tensor(self.cross_attn_outputs[idx], remote_tensor)
            self.request.set_tensor(name, remote_tensor)