Upload 2 files
Browse files- ov_mllama_generator_class.py +518 -0
- ov_mllama_generator_script.py +51 -0
ov_mllama_generator_class.py
ADDED
@@ -0,0 +1,518 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
""" Core wrapper patching class on mllama-11b OV - excludes all conversion components - and is only for inference.
|
3 |
+
|
4 |
+
-- Generation loop flows through GenerationMixin - will need to remove torch + transformers
|
5 |
+
"""
|
6 |
+
|
7 |
+
from pathlib import Path
|
8 |
+
from transformers import AutoConfig, GenerationConfig
|
9 |
+
|
10 |
+
from typing import Optional, Union, List, Tuple, Dict
|
11 |
+
from transformers.generation import GenerationMixin
|
12 |
+
from transformers.modeling_outputs import ModelOutput
|
13 |
+
import openvino.runtime.opset13 as ops
|
14 |
+
import openvino as ov
|
15 |
+
import torch
|
16 |
+
import numpy as np
|
17 |
+
from dataclasses import dataclass
|
18 |
+
from openvino.runtime.passes import Manager, MatcherPass, WrapType, Matcher
|
19 |
+
import time
|
20 |
+
|
21 |
+
core = ov.Core()
|
22 |
+
|
23 |
+
LANGUAGE_MODEL = "llm_int4_asym_r10_gs64_max_activation_variance_scale_all_layers.xml"
|
24 |
+
IMAGE_ENCODER = "openvino_vision_encoder_int8.xml"
|
25 |
+
|
26 |
+
@dataclass
|
27 |
+
class MLlamaOutputWithPast(ModelOutput):
|
28 |
+
loss: Optional[torch.FloatTensor] = None
|
29 |
+
logits: torch.FloatTensor = None
|
30 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
|
31 |
+
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
|
32 |
+
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
|
33 |
+
cross_attn_key_values: Optional[List[torch.FloatTensor]] = None
|
34 |
+
|
35 |
+
|
36 |
+
class InsertSlice(MatcherPass):
|
37 |
+
def __init__(self):
|
38 |
+
MatcherPass.__init__(self)
|
39 |
+
self.model_changed = False
|
40 |
+
|
41 |
+
param = WrapType("opset10.Result")
|
42 |
+
|
43 |
+
def callback(matcher: Matcher) -> bool:
|
44 |
+
root = matcher.get_match_root()
|
45 |
+
if root is None:
|
46 |
+
return False
|
47 |
+
if len(root.get_output_partial_shape(0)) == 3:
|
48 |
+
parent = root.input_value(0).get_node()
|
49 |
+
grand_parent = parent.input_value(0).get_node()
|
50 |
+
|
51 |
+
grand_parent_output = parent.input(0).get_source_output()
|
52 |
+
consumers = grand_parent_output.get_target_inputs()
|
53 |
+
start = np.array([0, -1, 0], dtype=np.int32)
|
54 |
+
stop = np.array([1, -2, grand_parent_output.get_partial_shape()[-1].get_length()], dtype=np.int32)
|
55 |
+
step = np.array([1, -1, 1], dtype=np.int32)
|
56 |
+
axes = np.array([0, 1, 2], dtype=np.int32)
|
57 |
+
slice = ops.slice(grand_parent, start, stop, step, axes, name="inserted_slice")
|
58 |
+
for consumer in consumers:
|
59 |
+
consumer.replace_source_output(slice.output(0))
|
60 |
+
self.model_changed = True
|
61 |
+
# Use new operation for additional matching
|
62 |
+
self.register_new_node(slice)
|
63 |
+
print("applied slice for lm head")
|
64 |
+
|
65 |
+
return True
|
66 |
+
|
67 |
+
self.register_matcher(Matcher(param, "InsertSlice"), callback)
|
68 |
+
|
69 |
+
|
70 |
+
STR_TO_OV_TYPE = {
|
71 |
+
"boolean": ov.Type.boolean,
|
72 |
+
"f16": ov.Type.f16,
|
73 |
+
"f32": ov.Type.f32,
|
74 |
+
"f64": ov.Type.f64,
|
75 |
+
"i8": ov.Type.i8,
|
76 |
+
"i16": ov.Type.i16,
|
77 |
+
"i32": ov.Type.i32,
|
78 |
+
"i64": ov.Type.i64,
|
79 |
+
"u8": ov.Type.u8,
|
80 |
+
"u16": ov.Type.u16,
|
81 |
+
"u32": ov.Type.u32,
|
82 |
+
"u64": ov.Type.u64,
|
83 |
+
"bf16": ov.Type.bf16,
|
84 |
+
}
|
85 |
+
|
86 |
+
|
87 |
+
class OVMLlamaForConditionalGeneration(GenerationMixin):
|
88 |
+
def __init__(
|
89 |
+
self,
|
90 |
+
model_dir: Union[str, Path],
|
91 |
+
device: str = "CPU",
|
92 |
+
ov_config: Optional[Dict[str, str]] = None,
|
93 |
+
language_model_name=None,
|
94 |
+
image_encoder_name=None,
|
95 |
+
slice_lm_head=True,
|
96 |
+
use_remote_tensors=True,
|
97 |
+
dynamic_shape=False,
|
98 |
+
):
|
99 |
+
model_dir = Path(model_dir)
|
100 |
+
self.config = AutoConfig.from_pretrained(model_dir)
|
101 |
+
self.generation_config = GenerationConfig.from_pretrained(model_dir)
|
102 |
+
self.main_input_name = "input_ids"
|
103 |
+
self.device = torch.device("cpu")
|
104 |
+
self._device = device
|
105 |
+
self.ov_config = ov_config
|
106 |
+
self.num_pkv = 2
|
107 |
+
self._supports_cache_class = False
|
108 |
+
self.next_beam_idx = None
|
109 |
+
self._past_length = None
|
110 |
+
if language_model_name:
|
111 |
+
self.model = core.read_model(model_dir / language_model_name)
|
112 |
+
else:
|
113 |
+
self.model = core.read_model(model_dir / LANGUAGE_MODEL)
|
114 |
+
if image_encoder_name:
|
115 |
+
self.vision_model = core.read_model(model_dir / image_encoder_name)
|
116 |
+
else:
|
117 |
+
self.vision_model = core.read_model(model_dir / IMAGE_ENCODER)
|
118 |
+
if not dynamic_shape:
|
119 |
+
self.reshape_vision_model()
|
120 |
+
self.update_pkv_precision()
|
121 |
+
if slice_lm_head:
|
122 |
+
self.slice_lm_head()
|
123 |
+
self.input_names = {key.get_any_name(): idx for idx, key in enumerate(self.model.inputs)}
|
124 |
+
self.output_names = {key.get_any_name(): idx for idx, key in enumerate(self.model.outputs)}
|
125 |
+
self.lm_cross_attn_inputs = [key for key in self.input_names if "cross_attn_key_values" in key]
|
126 |
+
compiled_model = core.compile_model(self.model, device, ov_config)
|
127 |
+
self.request = compiled_model.create_infer_request()
|
128 |
+
self.cross_attn_outputs = [key.get_any_name() for key in self.vision_model.outputs if "cross_attn_key_values" in key.get_any_name()]
|
129 |
+
compiled_vision_model = core.compile_model(self.vision_model, device, ov_config)
|
130 |
+
self.vision_request = compiled_vision_model.create_infer_request()
|
131 |
+
self.use_remote_tensors = use_remote_tensors and self._device == "GPU"
|
132 |
+
if self.use_remote_tensors:
|
133 |
+
self.prepare_remote_tensors()
|
134 |
+
self.next_beam_idx = None
|
135 |
+
self.num_patches = (self.config.vision_config.image_size // self.config.vision_config.patch_size) ** 2 + 1
|
136 |
+
self._past_length = 0
|
137 |
+
self.llm_infer_time = []
|
138 |
+
self.vision_encoder_infer_time = []
|
139 |
+
|
140 |
+
def _get_past_length(self, past_key_values=None):
|
141 |
+
if past_key_values is None:
|
142 |
+
return 0
|
143 |
+
return self._past_length
|
144 |
+
|
145 |
+
def reshape_vision_model(self):
|
146 |
+
self.vision_model.reshape(
|
147 |
+
{
|
148 |
+
0: ov.PartialShape([1, 1, 4, 3, self.config.vision_config.image_size, self.config.vision_config.image_size]),
|
149 |
+
1: ov.PartialShape([1, 1]),
|
150 |
+
2: ov.PartialShape([1, 1, 4]),
|
151 |
+
}
|
152 |
+
)
|
153 |
+
|
154 |
+
def update_pkv_precision(self, force_fp32=False):
|
155 |
+
pkv_precision = ov.Type.f32
|
156 |
+
if not force_fp32:
|
157 |
+
device = self._device.upper()
|
158 |
+
try:
|
159 |
+
if "INFERENCE_PRECISION_HINT" in core.get_property(device, "SUPPORTED_PROPERTIES"):
|
160 |
+
pkv_precision = core.get_property(device, "INFERENCE_PRECISION_HINT")
|
161 |
+
except RuntimeError: # use default precision when get_property fails, e.g. when device is "AUTO:GPU"
|
162 |
+
pass
|
163 |
+
|
164 |
+
# ov_config["INFERENCE_PRECISION_HINT"] may override the prefer precision
|
165 |
+
if self.ov_config:
|
166 |
+
inference_precision_hint = self.ov_config.get("INFERENCE_PRECISION_HINT", "")
|
167 |
+
if inference_precision_hint in STR_TO_OV_TYPE:
|
168 |
+
pkv_precision = STR_TO_OV_TYPE[inference_precision_hint]
|
169 |
+
|
170 |
+
ppp = ov.preprocess.PrePostProcessor(self.model)
|
171 |
+
for key in self.model.inputs:
|
172 |
+
if "cross_attn_key_values" in key.get_any_name() and pkv_precision != key.get_element_type():
|
173 |
+
ppp.input(key.get_any_name()).tensor().set_element_type(pkv_precision)
|
174 |
+
|
175 |
+
self.model = ppp.build()
|
176 |
+
|
177 |
+
ppp_v = ov.preprocess.PrePostProcessor(self.vision_model)
|
178 |
+
for key in self.vision_model.outputs:
|
179 |
+
if "cross_attn_key_values" in key.get_any_name() and pkv_precision != key.get_element_type():
|
180 |
+
ppp_v.output(key.get_any_name()).tensor().set_element_type(pkv_precision)
|
181 |
+
self.vision_model = ppp_v.build()
|
182 |
+
self._pkv_precision = pkv_precision
|
183 |
+
|
184 |
+
def slice_lm_head(self):
|
185 |
+
manager = Manager()
|
186 |
+
manager.register_pass(InsertSlice())
|
187 |
+
manager.run_passes(self.model)
|
188 |
+
self.model.validate_nodes_and_infer_types()
|
189 |
+
|
190 |
+
def forward(
|
191 |
+
self,
|
192 |
+
input_ids: torch.LongTensor = None,
|
193 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
194 |
+
aspect_ratio_mask: Optional[List[List[int]]] = None,
|
195 |
+
aspect_ratio_ids: Optional[torch.Tensor] = None,
|
196 |
+
attention_mask: Optional[List[List[List[int]]]] = None,
|
197 |
+
cross_attention_mask: Optional[torch.Tensor] = None,
|
198 |
+
cross_attention_states: Optional[torch.Tensor] = None,
|
199 |
+
position_ids: Optional[torch.LongTensor] = None,
|
200 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
201 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
202 |
+
labels: Optional[torch.LongTensor] = None,
|
203 |
+
use_cache: Optional[bool] = None,
|
204 |
+
output_attentions: Optional[bool] = None,
|
205 |
+
output_hidden_states: Optional[bool] = None,
|
206 |
+
return_dict: Optional[bool] = None,
|
207 |
+
cache_position: Optional[torch.LongTensor] = None,
|
208 |
+
cross_attn_key_values: Optional[List[torch.Tensor]] = None,
|
209 |
+
num_logits_to_keep: int = 0,
|
210 |
+
) -> Union[Tuple, MLlamaOutputWithPast]:
|
211 |
+
r"""
|
212 |
+
Args:
|
213 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
214 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
215 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
216 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
217 |
+
|
218 |
+
num_logits_to_keep (`int`, *optional*):
|
219 |
+
Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all
|
220 |
+
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
|
221 |
+
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
|
222 |
+
|
223 |
+
|
224 |
+
"""
|
225 |
+
|
226 |
+
if (input_ids is None) ^ (inputs_embeds is not None):
|
227 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one")
|
228 |
+
|
229 |
+
if pixel_values is not None and inputs_embeds is not None:
|
230 |
+
raise ValueError("You cannot specify both pixel_values and inputs_embeds at the same time, and must specify either one")
|
231 |
+
|
232 |
+
if pixel_values is not None and cross_attention_states is not None:
|
233 |
+
raise ValueError("`pixel_values` and `cross_attention_states` cannot be provided simultaneously")
|
234 |
+
|
235 |
+
if pixel_values is not None:
|
236 |
+
if aspect_ratio_ids is None:
|
237 |
+
raise ValueError("`aspect_ratio_ids` must be provided if `pixel_values` is provided")
|
238 |
+
# get vision tokens from vision model
|
239 |
+
cross_attn_key_values = self.visual_encoder(pixel_values, aspect_ratio_ids, aspect_ratio_mask)
|
240 |
+
cross_attention_mask, full_text_row_masked_out_mask = self._prepare_cross_attention_mask(
|
241 |
+
cross_attention_mask,
|
242 |
+
past_key_values=past_key_values,
|
243 |
+
num_vision_tokens=self.num_patches,
|
244 |
+
cross_attention_layers=cross_attn_key_values if past_key_values is not None else None,
|
245 |
+
cross_attention_states=((),),
|
246 |
+
device=self.device,
|
247 |
+
dtype=torch.float32,
|
248 |
+
)
|
249 |
+
|
250 |
+
if cross_attention_mask is not None and cache_position is not None:
|
251 |
+
cross_attention_mask = cross_attention_mask[:, :, cache_position]
|
252 |
+
full_text_row_masked_out_mask = full_text_row_masked_out_mask[:, :, cache_position]
|
253 |
+
|
254 |
+
return self.language_model(
|
255 |
+
input_ids=input_ids,
|
256 |
+
attention_mask=attention_mask,
|
257 |
+
position_ids=position_ids,
|
258 |
+
cross_attention_mask=cross_attention_mask,
|
259 |
+
full_text_row_masked_out_mask=full_text_row_masked_out_mask,
|
260 |
+
past_key_values=past_key_values,
|
261 |
+
cache_position=cache_position,
|
262 |
+
cross_attention_key_values=cross_attn_key_values,
|
263 |
+
)
|
264 |
+
|
265 |
+
def language_model(
|
266 |
+
self,
|
267 |
+
input_ids,
|
268 |
+
attention_mask,
|
269 |
+
position_ids,
|
270 |
+
cross_attention_mask,
|
271 |
+
full_text_row_masked_out_mask,
|
272 |
+
past_key_values,
|
273 |
+
cache_position,
|
274 |
+
cross_attention_key_values,
|
275 |
+
):
|
276 |
+
model_inputs = {
|
277 |
+
"input_ids": ov.Tensor(np.array(input_ids)),
|
278 |
+
"attention_mask": ov.Tensor(np.array(attention_mask)),
|
279 |
+
"position_ids": ov.Tensor(np.array(position_ids)),
|
280 |
+
"cross_attention_mask": ov.Tensor(np.array(cross_attention_mask)),
|
281 |
+
"full_text_row_masked_out_mask": ov.Tensor(np.array(full_text_row_masked_out_mask)),
|
282 |
+
"cache_position": ov.Tensor(np.array(cache_position)),
|
283 |
+
}
|
284 |
+
|
285 |
+
if past_key_values is None:
|
286 |
+
self.request.reset_state()
|
287 |
+
self.next_beam_idx = np.arange(input_ids.shape[0], dtype=int)
|
288 |
+
self._past_length = 0
|
289 |
+
self.llm_infer_time = []
|
290 |
+
|
291 |
+
if not self.use_remote_tensors:
|
292 |
+
model_inputs.update(dict(zip(self.lm_cross_attn_inputs, cross_attention_key_values)))
|
293 |
+
if "beam_idx" in self.input_names:
|
294 |
+
model_inputs["beam_idx"] = self.next_beam_idx if self.next_beam_idx is not None else np.arange(input_ids.shape[0], dtype=int)
|
295 |
+
|
296 |
+
start = time.perf_counter()
|
297 |
+
self.request.start_async(model_inputs, share_inputs=True)
|
298 |
+
self.request.wait()
|
299 |
+
end = time.perf_counter()
|
300 |
+
self.llm_infer_time.append(end - start)
|
301 |
+
logits = torch.from_numpy(self.request.get_tensor("logits").data)
|
302 |
+
past_key_values = ((),)
|
303 |
+
self._past_length += input_ids.shape[1]
|
304 |
+
out = MLlamaOutputWithPast(logits=logits, past_key_values=past_key_values, cross_attn_key_values=cross_attention_key_values)
|
305 |
+
return out
|
306 |
+
|
307 |
+
def can_generate(self):
|
308 |
+
"""Returns True to validate the check that the model using `GenerationMixin.generate()` can indeed generate."""
|
309 |
+
return True
|
310 |
+
|
311 |
+
def __call__(self, *args, **kwargs) -> MLlamaOutputWithPast:
|
312 |
+
return self.forward(
|
313 |
+
*args,
|
314 |
+
**kwargs,
|
315 |
+
)
|
316 |
+
|
317 |
+
def _reorder_cache(self, past_key_values: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor) -> Tuple[Tuple[torch.Tensor]]:
|
318 |
+
"""
|
319 |
+
This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or
|
320 |
+
[`~PreTrainedModel.beam_sample`] is called.
|
321 |
+
This is required to match `past_key_values` with the correct beam_idx at every generation step.
|
322 |
+
"""
|
323 |
+
self.next_beam_idx = np.array(beam_idx) # save beam_idx to be used as an input in the next iteration
|
324 |
+
return past_key_values
|
325 |
+
|
326 |
+
def prepare_inputs_for_generation(
|
327 |
+
self,
|
328 |
+
input_ids=None,
|
329 |
+
inputs_embeds=None,
|
330 |
+
attention_mask=None,
|
331 |
+
position_ids=None,
|
332 |
+
pixel_values=None,
|
333 |
+
aspect_ratio_ids=None,
|
334 |
+
aspect_ratio_mask=None,
|
335 |
+
cross_attention_mask=None,
|
336 |
+
past_key_values=None,
|
337 |
+
use_cache=False,
|
338 |
+
cache_position=None,
|
339 |
+
cross_attn_key_values=None,
|
340 |
+
num_logits_to_keep=None,
|
341 |
+
**kwargs,
|
342 |
+
):
|
343 |
+
# If we have cache: let's slice `input_ids` through `cache_position`, to keep only the unprocessed tokens
|
344 |
+
# Exception 1: when passing input_embeds, input_ids may be missing entries
|
345 |
+
# Exception 2: some generation methods do special slicing of input_ids, so we don't need to do it here
|
346 |
+
if past_key_values is not None:
|
347 |
+
if inputs_embeds is not None: # Exception 1
|
348 |
+
input_ids = input_ids[:, -cache_position.shape[0] :]
|
349 |
+
elif input_ids.shape[1] != cache_position.shape[0]: # Default case (the "else", a no op, is Exception 2)
|
350 |
+
input_ids = input_ids[:, cache_position]
|
351 |
+
|
352 |
+
if attention_mask is not None and position_ids is None:
|
353 |
+
# create position_ids on the fly for batch generation
|
354 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
355 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
356 |
+
if past_key_values:
|
357 |
+
position_ids = position_ids[:, -input_ids.shape[1] :]
|
358 |
+
|
359 |
+
# The clone here is for the same reason as for `position_ids`.
|
360 |
+
model_inputs = {"input_ids": input_ids, "inputs_embeds": None}
|
361 |
+
|
362 |
+
if num_logits_to_keep is not None:
|
363 |
+
model_inputs["num_logits_to_keep"] = num_logits_to_keep
|
364 |
+
|
365 |
+
model_inputs.update(
|
366 |
+
{
|
367 |
+
"position_ids": position_ids,
|
368 |
+
"cache_position": cache_position,
|
369 |
+
"past_key_values": past_key_values,
|
370 |
+
"use_cache": use_cache,
|
371 |
+
"attention_mask": attention_mask,
|
372 |
+
"cross_attention_mask": cross_attention_mask,
|
373 |
+
"cross_attn_key_values": cross_attn_key_values,
|
374 |
+
}
|
375 |
+
)
|
376 |
+
|
377 |
+
# If we're in pre-fill or cacheless decoding step, then we need pixel_values and aspect ratios
|
378 |
+
# to compute image hidden states, otherwise they are cache/home/ea/llama3.2/Llama-3.2-11B-Vision-Early/OVd within each cross attn layer
|
379 |
+
if (input_ids == self.config.image_token_index).any():
|
380 |
+
model_inputs["pixel_values"] = pixel_values
|
381 |
+
model_inputs["aspect_ratio_ids"] = aspect_ratio_ids
|
382 |
+
model_inputs["aspect_ratio_mask"] = aspect_ratio_mask
|
383 |
+
|
384 |
+
return model_inputs
|
385 |
+
|
386 |
+
def _update_model_kwargs_for_generation(self, outputs, model_kwargs, is_encoder_decoder, **kwargs):
|
387 |
+
cross_attention_mask_prev = model_kwargs.get("cross_attention_mask", None)
|
388 |
+
model_kwargs = super()._update_model_kwargs_for_generation(
|
389 |
+
outputs=outputs,
|
390 |
+
model_kwargs=model_kwargs,
|
391 |
+
is_encoder_decoder=is_encoder_decoder,
|
392 |
+
**kwargs,
|
393 |
+
)
|
394 |
+
|
395 |
+
# add cross-attn mask for new token
|
396 |
+
if cross_attention_mask_prev is not None:
|
397 |
+
model_kwargs["cross_attention_mask"] = torch.cat([cross_attention_mask_prev, cross_attention_mask_prev[:, -1:, ...]], dim=1)
|
398 |
+
model_kwargs["cross_attn_key_values"] = outputs.cross_attn_key_values
|
399 |
+
return model_kwargs
|
400 |
+
|
401 |
+
def _prepare_cross_attention_mask(
|
402 |
+
self,
|
403 |
+
cross_attention_mask: torch.Tensor,
|
404 |
+
past_key_values: Tuple,
|
405 |
+
num_vision_tokens: int,
|
406 |
+
cross_attention_states: torch.Tensor,
|
407 |
+
cross_attention_layers: List[int],
|
408 |
+
device: str,
|
409 |
+
dtype: str,
|
410 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
411 |
+
if cross_attention_mask is None:
|
412 |
+
# should we raise error or prepare a full attn mask with all ones?
|
413 |
+
return None, None
|
414 |
+
else:
|
415 |
+
# reshape so it can be used by attn module
|
416 |
+
batch_size, text_total_length, *_ = cross_attention_mask.shape
|
417 |
+
cross_attention_mask = cross_attention_mask.repeat_interleave(num_vision_tokens, dim=3)
|
418 |
+
cross_attention_mask = cross_attention_mask.view(batch_size, text_total_length, -1)
|
419 |
+
cross_attention_mask = cross_attention_mask.unsqueeze(1)
|
420 |
+
|
421 |
+
# invert the mask
|
422 |
+
inverted_cross_attn_mask = (1.0 - cross_attention_mask).to(dtype)
|
423 |
+
cross_attention_mask = inverted_cross_attn_mask.masked_fill(inverted_cross_attn_mask.to(torch.bool), torch.finfo(dtype).min)
|
424 |
+
|
425 |
+
# apply full-row bias, which return 4D tensor of shape [B, H, S1, 1] where value is 0 if the a full row in cross attn mask's
|
426 |
+
# last dimension contains negative infinity values, otherwise it's 1
|
427 |
+
negative_inf_value = torch.finfo(dtype).min
|
428 |
+
full_text_row_masked_out_mask = (cross_attention_mask != negative_inf_value).any(dim=-1).type_as(cross_attention_mask)[..., None]
|
429 |
+
cross_attention_mask *= full_text_row_masked_out_mask
|
430 |
+
|
431 |
+
# In case we receive a new image but already have previous cross-attention key/values in cache,
|
432 |
+
# then we need to extend the attention-mask and add previous images' lengths
|
433 |
+
if past_key_values is not None and cross_attention_states is not None and cross_attention_layers is not None:
|
434 |
+
# make all zeros mask for cross-attn-mask from previuos cached hidden_states, all zeros right?
|
435 |
+
# i.e. extend current cross-attn-mask on image-seq-length dimension to account for past_seen_tokens
|
436 |
+
past_cross_attn_kv_length = cross_attention_layers[0].shape[-2]
|
437 |
+
past_cross_attn_mask = torch.zeros((*cross_attention_mask.shape[:-1], past_cross_attn_kv_length), dtype=dtype, device=device)
|
438 |
+
# concatenate both on image-seq-length dimension
|
439 |
+
cross_attention_mask = torch.cat([past_cross_attn_mask, cross_attention_mask], dim=-1)
|
440 |
+
|
441 |
+
return cross_attention_mask, full_text_row_masked_out_mask
|
442 |
+
|
443 |
+
def visual_encoder(self, pixel_values, aspect_ratio_ids, aspect_ratio_mask):
|
444 |
+
if pixel_values is not None:
|
445 |
+
if aspect_ratio_ids is None:
|
446 |
+
raise ValueError("`aspect_ratio_ids` must be provided if `pixel_values` is provided")
|
447 |
+
self.vision_encoder_infer_time = []
|
448 |
+
start = time.perf_counter()
|
449 |
+
# get vision tokens from vision model
|
450 |
+
self.vision_request.start_async([pixel_values, aspect_ratio_ids, aspect_ratio_mask], share_inputs=True)
|
451 |
+
self.vision_request.wait()
|
452 |
+
end = time.perf_counter()
|
453 |
+
cross_attn_key_values = [self.vision_request.get_tensor(name) for name in self.cross_attn_outputs]
|
454 |
+
self.vision_encoder_infer_time.append(end - start)
|
455 |
+
return cross_attn_key_values
|
456 |
+
|
457 |
+
def prepare_vision_outputs(self, pixel_values, aspect_ratio_ids, aspect_ratio_mask, cross_attention_mask=None, past_key_values=None, cache_position=None):
|
458 |
+
cross_attn_key_values = self.visual_encoder(pixel_values, aspect_ratio_ids, aspect_ratio_mask)
|
459 |
+
cross_attn_key_values = [v.data for v in cross_attn_key_values]
|
460 |
+
cross_attention_mask, full_text_row_masked_out_mask = self._prepare_cross_attention_mask(
|
461 |
+
cross_attention_mask,
|
462 |
+
past_key_values=past_key_values,
|
463 |
+
num_vision_tokens=self.num_patches,
|
464 |
+
cross_attention_layers=cross_attn_key_values if past_key_values is not None else None,
|
465 |
+
cross_attention_states=1,
|
466 |
+
device=self.device,
|
467 |
+
dtype=torch.float32,
|
468 |
+
)
|
469 |
+
|
470 |
+
if cross_attention_mask is not None and cache_position is not None:
|
471 |
+
cross_attention_mask = cross_attention_mask[:, :, cache_position]
|
472 |
+
full_text_row_masked_out_mask = full_text_row_masked_out_mask[:, :, cache_position]
|
473 |
+
|
474 |
+
return {
|
475 |
+
"cross_attention_mask": cross_attention_mask,
|
476 |
+
"full_text_row_masked_out_mask": full_text_row_masked_out_mask,
|
477 |
+
"past_key_values": past_key_values,
|
478 |
+
"cache_position": cache_position,
|
479 |
+
"cross_attention_key_values": cross_attn_key_values,
|
480 |
+
}
|
481 |
+
|
482 |
+
def prepare_llm_inputs(
|
483 |
+
self,
|
484 |
+
input_ids,
|
485 |
+
attention_mask,
|
486 |
+
position_ids,
|
487 |
+
cross_attention_mask,
|
488 |
+
full_text_row_masked_out_mask,
|
489 |
+
past_key_values,
|
490 |
+
cache_position,
|
491 |
+
cross_attention_key_values,
|
492 |
+
):
|
493 |
+
model_inputs = {
|
494 |
+
"input_ids": input_ids,
|
495 |
+
"attention_mask": attention_mask,
|
496 |
+
"position_ids": position_ids,
|
497 |
+
"cross_attention_mask": cross_attention_mask,
|
498 |
+
"full_text_row_masked_out_mask": full_text_row_masked_out_mask,
|
499 |
+
"cache_position": cache_position,
|
500 |
+
}
|
501 |
+
|
502 |
+
if past_key_values is None:
|
503 |
+
self.request.reset_state()
|
504 |
+
self.next_beam_idx = np.arange(input_ids.shape[0], dtype=int)
|
505 |
+
self._past_length = 0
|
506 |
+
|
507 |
+
model_inputs.update(dict(zip(self.lm_cross_attn_inputs, cross_attention_key_values)))
|
508 |
+
if "beam_idx" in self.input_names:
|
509 |
+
model_inputs["beam_idx"] = self.next_beam_idx if self.next_beam_idx is not None else np.arange(input_ids.shape[0], dtype=int)
|
510 |
+
|
511 |
+
return model_inputs
|
512 |
+
|
513 |
+
def prepare_remote_tensors(self):
|
514 |
+
context = core.get_default_context("GPU")
|
515 |
+
for idx, name in enumerate(self.lm_cross_attn_inputs):
|
516 |
+
remote_tensor = context.create_tensor(ov.Type.f16, ov.Shape([1, 32, 6404, 128]), {})
|
517 |
+
self.vision_request.set_tensor(self.cross_attn_outputs[idx], remote_tensor)
|
518 |
+
self.request.set_tensor(name, remote_tensor)
|
ov_mllama_generator_script.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
""" Main inference generation for mLlama-3.2-11B compressed and packaged as OV model
|
3 |
+
|
4 |
+
-- accompanying generator_class file - ov_mllama_generator_class.py
|
5 |
+
|
6 |
+
-- dependencies: transformers and torch
|
7 |
+
|
8 |
+
"""
|
9 |
+
|
10 |
+
import requests
|
11 |
+
import openvino as ov
|
12 |
+
|
13 |
+
from PIL import Image
|
14 |
+
from transformers import TextStreamer, AutoProcessor
|
15 |
+
import numpy as np
|
16 |
+
|
17 |
+
from ov_mllama_generator_class import OVMLlamaForConditionalGeneration
|
18 |
+
|
19 |
+
model_id = "meta-llama/Llama-3.2-11B-Vision-Instruct"
|
20 |
+
model_dir = "C:\\Users\\darre\\llmware_data\\model_repo\\llama-11b-vision-instruct-ov"
|
21 |
+
|
22 |
+
core = ov.Core()
|
23 |
+
|
24 |
+
language_model_name = "llm_int4_asym_r10_gs64_max_activation_variance_scale_all_layers.xml"
|
25 |
+
vision_encoder_name = "openvino_vision_encoder_int8.xml"
|
26 |
+
device="CPU"
|
27 |
+
|
28 |
+
ov_model = OVMLlamaForConditionalGeneration(model_dir, device=device,
|
29 |
+
language_model_name=language_model_name,
|
30 |
+
image_encoder_name=vision_encoder_name)
|
31 |
+
|
32 |
+
processor = AutoProcessor.from_pretrained(model_dir)
|
33 |
+
|
34 |
+
question = "What is unusual on this image?"
|
35 |
+
|
36 |
+
messages = [
|
37 |
+
{"role": "user", "content": [{"type": "image"}, {"type": "text", "text": question}]},
|
38 |
+
]
|
39 |
+
text = processor.tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
|
40 |
+
url = "https://github.com/openvinotoolkit/openvino_notebooks/assets/29454499/d5fbbd1a-d484-415c-88cb-9986625b7b11"
|
41 |
+
raw_image = Image.open(requests.get(url, stream=True).raw)
|
42 |
+
|
43 |
+
inputs = processor(text=text, images=[raw_image], return_tensors="pt")
|
44 |
+
streamer = TextStreamer(processor.tokenizer, skip_prompt=True, skip_special_tokens=True)
|
45 |
+
print(f"Question: {question}")
|
46 |
+
|
47 |
+
output = ov_model.generate(**inputs, do_sample=False, max_new_tokens=100, temperature=None, top_p=None, streamer=streamer)
|
48 |
+
print(f"Visual encoder time {ov_model.vision_encoder_infer_time[0] * 1000 :.2f} ms")
|
49 |
+
print(f"First token latency {ov_model.llm_infer_time[0] * 1000 :.2f}ms, Second token latency {np.mean(np.array(ov_model.llm_infer_time[1:])) * 1000:.2f}ms")
|
50 |
+
|
51 |
+
|