|
--- |
|
language: |
|
- vi |
|
--- |
|
You can check our model card here: [`llm4fun/vietrag-7b-v1.0`](https://huggingface.co/llm4fun/vietrag-7b-v1.0) |
|
```py |
|
from transformers import GenerationConfig, TextStreamer |
|
from transformers import LlamaForCausalLM, LlamaTokenizer, LlamaConfig |
|
import torch |
|
|
|
question = "<your-question>" |
|
context = "<your-context>" |
|
instruction = 'You are an AI assistant. Provide a detailed answer so user don’t need to search outside to understand the answer.' |
|
input = f"Dựa vào một số ngữ cảnh được cho dưới đây, trả lời câu hỏi ở cuối.\n\n{context}\n\nQuestion: {question}" |
|
prompt_template = ( |
|
"### System:\n" |
|
"Below is an instruction that describes a task, paired with an input that provides further context. " |
|
"Write a response that appropriately completes the request.\n\n\n\n" |
|
"### Instruction:\n{instruction}\n\n" |
|
"### Input:\n{input}\n\n" |
|
"### Response:\n{output}" |
|
) |
|
prompt = prompt_template.format(instruction=instruction, input=input, output='') |
|
|
|
torch_dtype = torch.bfloat16 |
|
model_id = "llm4fun/vietrag-7b-v1.0" |
|
device = "cuda" |
|
|
|
tokenizer = LlamaTokenizer.from_pretrained(model_id) |
|
model = LlamaForCausalLM.from_pretrained( |
|
model_id, |
|
config=LlamaConfig.from_pretrained(model_id), |
|
torch_dtype=torch_dtype |
|
) |
|
|
|
model = model.eval().to(device) |
|
|
|
def generate(prompt, max_new_tokens=1024): |
|
input_ids = tokenizer(prompt, return_tensors="pt")["input_ids"].to(model.device) |
|
model.eval() |
|
with torch.no_grad(): |
|
generation_config = GenerationConfig( |
|
repetition_penalty=1.13, |
|
max_new_tokens=max_new_tokens, |
|
# temperature=0.2, |
|
# top_p=0.95, |
|
# top_k=20, |
|
# bos_token_id=tokenizer.bos_token_id, |
|
# eos_token_id=tokenizer.eos_token_id, |
|
# eos_token_id=0, # for open-end generation. |
|
pad_token_id=tokenizer.pad_token_id, |
|
do_sample=False, |
|
use_cache=True, |
|
return_dict_in_generate=True, |
|
output_attentions=False, |
|
output_hidden_states=False, |
|
output_scores=False, |
|
) |
|
streamer = TextStreamer(tokenizer, skip_prompt=True) |
|
generated = model.generate( |
|
inputs=input_ids, |
|
generation_config=generation_config, |
|
streamer=streamer, |
|
) |
|
|
|
gen_tokens = generated["sequences"].cpu()[:, len(input_ids[0]):] |
|
output = tokenizer.batch_decode(gen_tokens)[0] |
|
output = output.split(tokenizer.eos_token)[0] |
|
return output.strip() |
|
|
|
output = generate(prompt) |
|
``` |
|
To tweak the model's answering style, feel free to replace the `instruction` part of the prompt. I reccommend you select one of these following instructions, because they are used during training. |
|
```py |
|
instructions = [ |
|
'You are an AI assistant. Provide a detailed answer so user don’t need to search outside to understand the answer.', |
|
'You are an AI assistant. You will be given a task. You must generate a detailed and long answer.', |
|
'You are an AI assistant. User will you give you a task. Your goal is to complete the task as faithfully as you can. While performing the task think step-by-step and justify your steps.', |
|
'You are an smart assistant. Provide a direct, short and exact answer to the following question from its provided context.' |
|
] |
|
``` |