gemma2b-it-1.1-summarize-gpt4o-256k
This model is a fine-tuned version of google/gemma-1.1-2b-it on the llama-duo/synth_summarize_dataset_dedup dataset. It achieves the following results on the evaluation set:
- Loss: 2.7127
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 8
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 2
- total_train_batch_size: 128
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.9633 | 0.9976 | 206 | 2.6959 |
0.865 | 2.0 | 413 | 2.6511 |
0.8266 | 2.9976 | 619 | 2.6475 |
0.7953 | 4.0 | 826 | 2.6603 |
0.7708 | 4.9976 | 1032 | 2.6720 |
0.75 | 6.0 | 1239 | 2.6898 |
0.7446 | 6.9976 | 1445 | 2.7026 |
0.7301 | 8.0 | 1652 | 2.7081 |
0.7268 | 8.9976 | 1858 | 2.7128 |
0.7318 | 9.9758 | 2060 | 2.7127 |
Framework versions
- PEFT 0.11.1
- Transformers 4.41.2
- Pytorch 2.3.1+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1
- Downloads last month
- 2
Model tree for llama-duo/gemma2b-it-1.1-summarize-gpt4o-256k
Base model
google/gemma-1.1-2b-it