lixg_food_model001 / README.md
lixugang's picture
End of training
2bf7942 verified
metadata
license: apache-2.0
base_model: google/vit-base-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: lixg_food_model001
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.6672051696284329

lixg_food_model001

This model is a fine-tuned version of google/vit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 77893286362087424.0000
  • Accuracy: 0.6672

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Accuracy
81023272984825040.0000 1.0 87 77893286362087424.0000 0.6010
68230118470215272.0000 2.0 174 77893286362087424.0000 0.6171
66808662965878784.0000 3.0 261 77893286362087424.0000 0.6672

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.2+cpu
  • Datasets 2.16.1
  • Tokenizers 0.15.0