|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import torch |
|
import torch.nn as nn |
|
|
|
|
|
def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1): |
|
"""3x3 convolution with padding""" |
|
return nn.Conv2d( |
|
in_planes, |
|
out_planes, |
|
kernel_size=3, |
|
stride=stride, |
|
padding=dilation, |
|
groups=groups, |
|
bias=False, |
|
dilation=dilation, |
|
) |
|
|
|
|
|
def conv1x1(in_planes, out_planes, stride=1): |
|
"""1x1 convolution""" |
|
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False) |
|
|
|
|
|
class BasicBlock(nn.Module): |
|
expansion = 1 |
|
__constants__ = ["downsample"] |
|
|
|
def __init__( |
|
self, |
|
inplanes, |
|
planes, |
|
stride=1, |
|
downsample=None, |
|
groups=1, |
|
base_width=64, |
|
dilation=1, |
|
norm_layer=None, |
|
): |
|
super(BasicBlock, self).__init__() |
|
if norm_layer is None: |
|
norm_layer = nn.BatchNorm2d |
|
if groups != 1 or base_width != 64: |
|
raise ValueError("BasicBlock only supports groups=1 and base_width=64") |
|
if dilation > 1: |
|
raise NotImplementedError("Dilation > 1 not supported in BasicBlock") |
|
|
|
self.conv1 = conv3x3(inplanes, planes, stride) |
|
self.bn1 = norm_layer(planes) |
|
self.relu = nn.ReLU(inplace=True) |
|
self.conv2 = conv3x3(planes, planes) |
|
self.bn2 = norm_layer(planes) |
|
self.downsample = downsample |
|
self.stride = stride |
|
|
|
def forward(self, x): |
|
identity = x |
|
|
|
out = self.conv1(x) |
|
out = self.bn1(out) |
|
out = self.relu(out) |
|
|
|
out = self.conv2(out) |
|
out = self.bn2(out) |
|
|
|
if self.downsample is not None: |
|
identity = self.downsample(x) |
|
|
|
out += identity |
|
out = self.relu(out) |
|
|
|
return out |
|
|
|
|
|
class Bottleneck(nn.Module): |
|
expansion = 4 |
|
__constants__ = ["downsample"] |
|
|
|
def __init__( |
|
self, |
|
inplanes, |
|
planes, |
|
stride=1, |
|
downsample=None, |
|
groups=1, |
|
base_width=64, |
|
dilation=1, |
|
norm_layer=None, |
|
): |
|
super(Bottleneck, self).__init__() |
|
if norm_layer is None: |
|
norm_layer = nn.BatchNorm2d |
|
width = int(planes * (base_width / 64.0)) * groups |
|
|
|
self.conv1 = conv1x1(inplanes, width) |
|
self.bn1 = norm_layer(width) |
|
self.conv2 = conv3x3(width, width, stride, groups, dilation) |
|
self.bn2 = norm_layer(width) |
|
self.conv3 = conv1x1(width, planes * self.expansion) |
|
self.bn3 = norm_layer(planes * self.expansion) |
|
self.relu = nn.ReLU(inplace=True) |
|
self.downsample = downsample |
|
self.stride = stride |
|
|
|
def forward(self, x): |
|
identity = x |
|
|
|
out = self.conv1(x) |
|
out = self.bn1(out) |
|
out = self.relu(out) |
|
|
|
out = self.conv2(out) |
|
out = self.bn2(out) |
|
out = self.relu(out) |
|
|
|
out = self.conv3(out) |
|
out = self.bn3(out) |
|
|
|
if self.downsample is not None: |
|
identity = self.downsample(x) |
|
|
|
out += identity |
|
out = self.relu(out) |
|
|
|
return out |
|
|
|
|
|
class ResNet(nn.Module): |
|
def __init__( |
|
self, |
|
block, |
|
layers, |
|
num_classes=1000, |
|
zero_init_residual=False, |
|
groups=1, |
|
widen=1, |
|
width_per_group=64, |
|
replace_stride_with_dilation=None, |
|
norm_layer=None, |
|
): |
|
super(ResNet, self).__init__() |
|
if norm_layer is None: |
|
norm_layer = nn.BatchNorm2d |
|
self._norm_layer = norm_layer |
|
|
|
self.inplanes = width_per_group * widen |
|
self.dilation = 1 |
|
if replace_stride_with_dilation is None: |
|
|
|
|
|
replace_stride_with_dilation = [False, False, False] |
|
if len(replace_stride_with_dilation) != 3: |
|
raise ValueError( |
|
"replace_stride_with_dilation should be None " |
|
"or a 3-element tuple, got {}".format(replace_stride_with_dilation) |
|
) |
|
self.groups = groups |
|
self.base_width = width_per_group |
|
|
|
num_out_filters = width_per_group * widen |
|
self.conv1 = nn.Conv2d( |
|
3, num_out_filters, kernel_size=7, stride=2, padding=3, bias=False |
|
) |
|
self.bn1 = norm_layer(num_out_filters) |
|
self.relu = nn.ReLU(inplace=True) |
|
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) |
|
self.layer1 = self._make_layer(block, num_out_filters, layers[0]) |
|
num_out_filters *= 2 |
|
self.layer2 = self._make_layer( |
|
block, num_out_filters, layers[1], stride=2, dilate=replace_stride_with_dilation[0] |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) |
|
|
|
|
|
|
|
|
|
|
|
if zero_init_residual: |
|
for m in self.modules(): |
|
if isinstance(m, Bottleneck): |
|
nn.init.constant_(m.bn3.weight, 0) |
|
elif isinstance(m, BasicBlock): |
|
nn.init.constant_(m.bn2.weight, 0) |
|
|
|
def _make_layer(self, block, planes, blocks, stride=1, dilate=False): |
|
norm_layer = self._norm_layer |
|
downsample = None |
|
previous_dilation = self.dilation |
|
if dilate: |
|
self.dilation *= stride |
|
stride = 1 |
|
if stride != 1 or self.inplanes != planes * block.expansion: |
|
downsample = nn.Sequential( |
|
conv1x1(self.inplanes, planes * block.expansion, stride), |
|
norm_layer(planes * block.expansion), |
|
) |
|
|
|
layers = [] |
|
layers.append( |
|
block( |
|
self.inplanes, |
|
planes, |
|
stride, |
|
downsample, |
|
self.groups, |
|
self.base_width, |
|
previous_dilation, |
|
norm_layer, |
|
) |
|
) |
|
self.inplanes = planes * block.expansion |
|
for _ in range(1, blocks): |
|
layers.append( |
|
block( |
|
self.inplanes, |
|
planes, |
|
groups=self.groups, |
|
base_width=self.base_width, |
|
dilation=self.dilation, |
|
norm_layer=norm_layer, |
|
) |
|
) |
|
|
|
return nn.Sequential(*layers) |
|
|
|
def forward(self, x): |
|
x = self.conv1(x) |
|
x = self.bn1(x) |
|
x = self.relu(x) |
|
x = self.maxpool(x) |
|
x = self.layer1(x) |
|
x = self.layer2(x) |
|
|
|
|
|
|
|
x = self.avgpool(x) |
|
x = torch.flatten(x, 1) |
|
|
|
|
|
return x |
|
|
|
|
|
def resnet50(**kwargs): |
|
return ResNet(Bottleneck, [3, 4, 6, 3], **kwargs) |
|
|
|
|
|
def resnet50w2(**kwargs): |
|
return ResNet(Bottleneck, [3, 4, 6, 3], widen=2, **kwargs) |
|
|
|
|
|
def resnet50w4(**kwargs): |
|
return ResNet(Bottleneck, [3, 4, 6, 3], widen=4, **kwargs) |
|
|
|
|
|
def resnet50w5(**kwargs): |
|
return ResNet(Bottleneck, [3, 4, 6, 3], widen=5, **kwargs) |
|
|
|
|
|
if __name__ == '__main__': |
|
import onnxruntime as ort |
|
x=torch.rand(1,3,224,224) |
|
model = resnet50w2() |
|
model.eval() |
|
|
|
swav_state_dict = torch.load('/opt/software/github/he-ai/swav_RN50w2_400ep_pretrain.pth.tar') |
|
|
|
for k in list(swav_state_dict.keys()): |
|
if k.startswith('module.layer3') or k.startswith('module.layer4') or k.startswith('module.pro'):del swav_state_dict[k] |
|
|
|
for k in list(swav_state_dict.keys()): |
|
swav_state_dict[k.replace('module.', '')] = swav_state_dict[k] |
|
del swav_state_dict[k] |
|
msg = model.load_state_dict(swav_state_dict, strict=False) |
|
print(msg) |
|
torch.save(swav_state_dict, 'swav_imagenet_layer2.pt') |
|
|
|
traced_script_module = torch.jit.trace(model, x) |
|
traced_script_module.save("traced_swav_imagenet_layer2.pt") |
|
traced_feature = traced_script_module(x).detach().cpu().numpy() |
|
print(traced_feature) |
|
print(model(x)) |
|
|
|
|
|
dynamic_axes={"x": {0:"batch_size"}, 'feature': {0:'batch_size'}} |
|
torch.onnx.export(model, x, "swav_imagenet_layer2.onnx", verbose=False, input_names=['x'], output_names=['feature'], dynamic_axes=dynamic_axes, do_constant_folding=True) |
|
ort_session = ort.InferenceSession("swav_imagenet_layer2.onnx") |
|
onnx_outputs = ort_session.run(None, {'x':x.numpy()}) |
|
print(onnx_outputs[0]) |
|
|
|
|