imagenet-swav-resnet50w2 / trace_layer2.py
lixc
add md5 and pytorch weights
755671e
raw
history blame
9.47 kB
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
#
import torch
import torch.nn as nn
def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1):
"""3x3 convolution with padding"""
return nn.Conv2d(
in_planes,
out_planes,
kernel_size=3,
stride=stride,
padding=dilation,
groups=groups,
bias=False,
dilation=dilation,
)
def conv1x1(in_planes, out_planes, stride=1):
"""1x1 convolution"""
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
class BasicBlock(nn.Module):
expansion = 1
__constants__ = ["downsample"]
def __init__(
self,
inplanes,
planes,
stride=1,
downsample=None,
groups=1,
base_width=64,
dilation=1,
norm_layer=None,
):
super(BasicBlock, self).__init__()
if norm_layer is None:
norm_layer = nn.BatchNorm2d
if groups != 1 or base_width != 64:
raise ValueError("BasicBlock only supports groups=1 and base_width=64")
if dilation > 1:
raise NotImplementedError("Dilation > 1 not supported in BasicBlock")
# Both self.conv1 and self.downsample layers downsample the input when stride != 1
self.conv1 = conv3x3(inplanes, planes, stride)
self.bn1 = norm_layer(planes)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3(planes, planes)
self.bn2 = norm_layer(planes)
self.downsample = downsample
self.stride = stride
def forward(self, x):
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = self.relu(out)
return out
class Bottleneck(nn.Module):
expansion = 4
__constants__ = ["downsample"]
def __init__(
self,
inplanes,
planes,
stride=1,
downsample=None,
groups=1,
base_width=64,
dilation=1,
norm_layer=None,
):
super(Bottleneck, self).__init__()
if norm_layer is None:
norm_layer = nn.BatchNorm2d
width = int(planes * (base_width / 64.0)) * groups
# Both self.conv2 and self.downsample layers downsample the input when stride != 1
self.conv1 = conv1x1(inplanes, width)
self.bn1 = norm_layer(width)
self.conv2 = conv3x3(width, width, stride, groups, dilation)
self.bn2 = norm_layer(width)
self.conv3 = conv1x1(width, planes * self.expansion)
self.bn3 = norm_layer(planes * self.expansion)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
def forward(self, x):
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = self.relu(out)
return out
class ResNet(nn.Module):
def __init__(
self,
block,
layers,
num_classes=1000,
zero_init_residual=False,
groups=1,
widen=1,
width_per_group=64,
replace_stride_with_dilation=None,
norm_layer=None,
):
super(ResNet, self).__init__()
if norm_layer is None:
norm_layer = nn.BatchNorm2d
self._norm_layer = norm_layer
self.inplanes = width_per_group * widen
self.dilation = 1
if replace_stride_with_dilation is None:
# each element in the tuple indicates if we should replace
# the 2x2 stride with a dilated convolution instead
replace_stride_with_dilation = [False, False, False]
if len(replace_stride_with_dilation) != 3:
raise ValueError(
"replace_stride_with_dilation should be None "
"or a 3-element tuple, got {}".format(replace_stride_with_dilation)
)
self.groups = groups
self.base_width = width_per_group
num_out_filters = width_per_group * widen
self.conv1 = nn.Conv2d(
3, num_out_filters, kernel_size=7, stride=2, padding=3, bias=False
)
self.bn1 = norm_layer(num_out_filters)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, num_out_filters, layers[0])
num_out_filters *= 2
self.layer2 = self._make_layer(
block, num_out_filters, layers[1], stride=2, dilate=replace_stride_with_dilation[0]
)
#num_out_filters *= 2
#self.layer3 = self._make_layer(
# block, num_out_filters, layers[2], stride=2, dilate=replace_stride_with_dilation[1]
#)
#num_out_filters *= 2
#self.layer4 = self._make_layer(
# block, num_out_filters, layers[3], stride=2, dilate=replace_stride_with_dilation[2]
#)
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
#self.fc = nn.Linear(512 * block.expansion * widen, num_classes)
# Zero-initialize the last BN in each residual branch,
# so that the residual branch starts with zeros, and each residual block behaves like an identity.
# This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677
if zero_init_residual:
for m in self.modules():
if isinstance(m, Bottleneck):
nn.init.constant_(m.bn3.weight, 0)
elif isinstance(m, BasicBlock):
nn.init.constant_(m.bn2.weight, 0)
def _make_layer(self, block, planes, blocks, stride=1, dilate=False):
norm_layer = self._norm_layer
downsample = None
previous_dilation = self.dilation
if dilate:
self.dilation *= stride
stride = 1
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
conv1x1(self.inplanes, planes * block.expansion, stride),
norm_layer(planes * block.expansion),
)
layers = []
layers.append(
block(
self.inplanes,
planes,
stride,
downsample,
self.groups,
self.base_width,
previous_dilation,
norm_layer,
)
)
self.inplanes = planes * block.expansion
for _ in range(1, blocks):
layers.append(
block(
self.inplanes,
planes,
groups=self.groups,
base_width=self.base_width,
dilation=self.dilation,
norm_layer=norm_layer,
)
)
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
#x = self.layer3(x)
#x = self.layer4(x)
x = self.avgpool(x)
x = torch.flatten(x, 1)
#x = self.fc(x)
return x
def resnet50(**kwargs):
return ResNet(Bottleneck, [3, 4, 6, 3], **kwargs)
def resnet50w2(**kwargs):
return ResNet(Bottleneck, [3, 4, 6, 3], widen=2, **kwargs)
def resnet50w4(**kwargs):
return ResNet(Bottleneck, [3, 4, 6, 3], widen=4, **kwargs)
def resnet50w5(**kwargs):
return ResNet(Bottleneck, [3, 4, 6, 3], widen=5, **kwargs)
if __name__ == '__main__':
import onnxruntime as ort
x=torch.rand(1,3,224,224)
model = resnet50w2()
model.eval()
swav_state_dict = torch.load('/opt/software/github/he-ai/swav_RN50w2_400ep_pretrain.pth.tar')
for k in list(swav_state_dict.keys()):
if k.startswith('module.layer3') or k.startswith('module.layer4') or k.startswith('module.pro'):del swav_state_dict[k]
for k in list(swav_state_dict.keys()):
swav_state_dict[k.replace('module.', '')] = swav_state_dict[k]
del swav_state_dict[k]
msg = model.load_state_dict(swav_state_dict, strict=False)
print(msg)
torch.save(swav_state_dict, 'swav_imagenet_layer2.pt')
traced_script_module = torch.jit.trace(model, x)
traced_script_module.save("traced_swav_imagenet_layer2.pt")
traced_feature = traced_script_module(x).detach().cpu().numpy()
print(traced_feature)
print(model(x))
dynamic_axes={"x": {0:"batch_size"}, 'feature': {0:'batch_size'}}
torch.onnx.export(model, x, "swav_imagenet_layer2.onnx", verbose=False, input_names=['x'], output_names=['feature'], dynamic_axes=dynamic_axes, do_constant_folding=True)
ort_session = ort.InferenceSession("swav_imagenet_layer2.onnx")
onnx_outputs = ort_session.run(None, {'x':x.numpy()})
print(onnx_outputs[0])