factual-consistency-multilabel-classification-ja
This model is a fine-tuned version of line-corporation/line-distilbert-base-japanese on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.3230
- Accuracy: 0.8701
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 64
- eval_batch_size: 8
- seed: 42
- distributed_type: tpu
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 306 | 0.4850 | 0.7861 |
0.5279 | 2.0 | 612 | 0.4657 | 0.7881 |
0.5279 | 3.0 | 918 | 0.4495 | 0.7979 |
0.4707 | 4.0 | 1224 | 0.4361 | 0.8115 |
0.448 | 5.0 | 1530 | 0.4252 | 0.8242 |
0.448 | 6.0 | 1836 | 0.4169 | 0.8271 |
0.4321 | 7.0 | 2142 | 0.4098 | 0.8369 |
0.4321 | 8.0 | 2448 | 0.4037 | 0.8389 |
0.4208 | 9.0 | 2754 | 0.3989 | 0.8428 |
0.4129 | 10.0 | 3060 | 0.3942 | 0.8447 |
0.4129 | 11.0 | 3366 | 0.3905 | 0.8457 |
0.4058 | 12.0 | 3672 | 0.3865 | 0.8467 |
0.4058 | 13.0 | 3978 | 0.3833 | 0.8496 |
0.4041 | 14.0 | 4284 | 0.3802 | 0.8496 |
0.3992 | 15.0 | 4590 | 0.3774 | 0.8506 |
0.3992 | 16.0 | 4896 | 0.3749 | 0.8525 |
0.3922 | 17.0 | 5202 | 0.3726 | 0.8525 |
0.3936 | 18.0 | 5508 | 0.3701 | 0.8535 |
0.3936 | 19.0 | 5814 | 0.3679 | 0.8535 |
0.3893 | 20.0 | 6120 | 0.3666 | 0.8535 |
0.3893 | 21.0 | 6426 | 0.3640 | 0.8555 |
0.3871 | 22.0 | 6732 | 0.3626 | 0.8545 |
0.3856 | 23.0 | 7038 | 0.3607 | 0.8555 |
0.3856 | 24.0 | 7344 | 0.3591 | 0.8564 |
0.3836 | 25.0 | 7650 | 0.3572 | 0.8584 |
0.3836 | 26.0 | 7956 | 0.3561 | 0.8604 |
0.3801 | 27.0 | 8262 | 0.3543 | 0.8604 |
0.3794 | 28.0 | 8568 | 0.3530 | 0.8613 |
0.3794 | 29.0 | 8874 | 0.3517 | 0.8633 |
0.379 | 30.0 | 9180 | 0.3505 | 0.8633 |
0.379 | 31.0 | 9486 | 0.3494 | 0.8633 |
0.377 | 32.0 | 9792 | 0.3482 | 0.8623 |
0.3765 | 33.0 | 10098 | 0.3471 | 0.8662 |
0.3765 | 34.0 | 10404 | 0.3465 | 0.8652 |
0.3739 | 35.0 | 10710 | 0.3456 | 0.8613 |
0.3737 | 36.0 | 11016 | 0.3441 | 0.8662 |
0.3737 | 37.0 | 11322 | 0.3435 | 0.8662 |
0.3723 | 38.0 | 11628 | 0.3426 | 0.8662 |
0.3723 | 39.0 | 11934 | 0.3418 | 0.8652 |
0.3728 | 40.0 | 12240 | 0.3410 | 0.8652 |
0.3713 | 41.0 | 12546 | 0.3401 | 0.8633 |
0.3713 | 42.0 | 12852 | 0.3395 | 0.8662 |
0.3686 | 43.0 | 13158 | 0.3392 | 0.8662 |
0.3686 | 44.0 | 13464 | 0.3378 | 0.8643 |
0.3693 | 45.0 | 13770 | 0.3375 | 0.8662 |
0.3685 | 46.0 | 14076 | 0.3365 | 0.8643 |
0.3685 | 47.0 | 14382 | 0.3362 | 0.8643 |
0.3675 | 48.0 | 14688 | 0.3352 | 0.8633 |
0.3675 | 49.0 | 14994 | 0.3349 | 0.8643 |
0.3654 | 50.0 | 15300 | 0.3341 | 0.8652 |
0.3672 | 51.0 | 15606 | 0.3339 | 0.8672 |
0.3672 | 52.0 | 15912 | 0.3335 | 0.8682 |
0.3659 | 53.0 | 16218 | 0.3325 | 0.8643 |
0.3648 | 54.0 | 16524 | 0.3323 | 0.8662 |
0.3648 | 55.0 | 16830 | 0.3315 | 0.8643 |
0.3638 | 56.0 | 17136 | 0.3314 | 0.8643 |
0.3638 | 57.0 | 17442 | 0.3307 | 0.8662 |
0.3657 | 58.0 | 17748 | 0.3304 | 0.8662 |
0.3641 | 59.0 | 18054 | 0.3299 | 0.8662 |
0.3641 | 60.0 | 18360 | 0.3297 | 0.8672 |
0.3624 | 61.0 | 18666 | 0.3294 | 0.8672 |
0.3624 | 62.0 | 18972 | 0.3290 | 0.8662 |
0.3625 | 63.0 | 19278 | 0.3285 | 0.8662 |
0.3639 | 64.0 | 19584 | 0.3281 | 0.8662 |
0.3639 | 65.0 | 19890 | 0.3282 | 0.8682 |
0.3632 | 66.0 | 20196 | 0.3274 | 0.8652 |
0.3618 | 67.0 | 20502 | 0.3273 | 0.8682 |
0.3618 | 68.0 | 20808 | 0.3270 | 0.8672 |
0.3636 | 69.0 | 21114 | 0.3267 | 0.8672 |
0.3636 | 70.0 | 21420 | 0.3265 | 0.8662 |
0.3577 | 71.0 | 21726 | 0.3262 | 0.8682 |
0.3607 | 72.0 | 22032 | 0.3262 | 0.8682 |
0.3607 | 73.0 | 22338 | 0.3258 | 0.8682 |
0.3591 | 74.0 | 22644 | 0.3255 | 0.8662 |
0.3591 | 75.0 | 22950 | 0.3255 | 0.8691 |
0.3597 | 76.0 | 23256 | 0.3252 | 0.8691 |
0.3593 | 77.0 | 23562 | 0.3250 | 0.8691 |
0.3593 | 78.0 | 23868 | 0.3248 | 0.8682 |
0.3597 | 79.0 | 24174 | 0.3246 | 0.8682 |
0.3597 | 80.0 | 24480 | 0.3244 | 0.8672 |
0.3593 | 81.0 | 24786 | 0.3243 | 0.8672 |
0.3602 | 82.0 | 25092 | 0.3242 | 0.8682 |
0.3602 | 83.0 | 25398 | 0.3242 | 0.8672 |
0.3579 | 84.0 | 25704 | 0.3242 | 0.8711 |
0.3614 | 85.0 | 26010 | 0.3238 | 0.8672 |
0.3614 | 86.0 | 26316 | 0.3238 | 0.8711 |
0.359 | 87.0 | 26622 | 0.3237 | 0.8701 |
0.359 | 88.0 | 26928 | 0.3236 | 0.8682 |
0.3583 | 89.0 | 27234 | 0.3235 | 0.8682 |
0.3591 | 90.0 | 27540 | 0.3234 | 0.8682 |
0.3591 | 91.0 | 27846 | 0.3233 | 0.8691 |
0.3581 | 92.0 | 28152 | 0.3231 | 0.8672 |
0.3581 | 93.0 | 28458 | 0.3232 | 0.8701 |
0.3579 | 94.0 | 28764 | 0.3231 | 0.8691 |
0.3584 | 95.0 | 29070 | 0.3231 | 0.8701 |
0.3584 | 96.0 | 29376 | 0.3230 | 0.8701 |
0.356 | 97.0 | 29682 | 0.3230 | 0.8691 |
0.356 | 98.0 | 29988 | 0.3230 | 0.8691 |
0.3604 | 99.0 | 30294 | 0.3230 | 0.8701 |
0.3607 | 100.0 | 30600 | 0.3230 | 0.8701 |
Framework versions
- Transformers 4.34.0
- Pytorch 2.0.0+cu118
- Datasets 2.14.5
- Tokenizers 0.14.0
- Downloads last month
- 84