File size: 2,000 Bytes
214dc8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
---
license: other
tags:
- generated_from_trainer
datasets:
- image_folder
metrics:
- accuracy
model-index:
- name: mobilenet_v2_1.0_224-plant-disease-identification
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: image_folder
      type: image_folder
      config: default
      split: train
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.7145092460881934
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# mobilenet_v2_1.0_224-plant-disease-identification

This model is a fine-tuned version of [google/mobilenet_v2_1.0_224](https://huggingface.co/google/mobilenet_v2_1.0_224) on the image_folder dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3799
- Accuracy: 0.7145

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 256
- eval_batch_size: 256
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 2.3889        | 1.0   | 248  | 2.1952          | 0.6310   |
| 1.8202        | 2.0   | 496  | 1.6363          | 0.7013   |
| 1.6266        | 3.0   | 744  | 1.6291          | 0.6343   |
| 1.5566        | 4.0   | 992  | 1.3514          | 0.7129   |
| 1.5507        | 5.0   | 1240 | 1.3799          | 0.7145   |


### Framework versions

- Transformers 4.26.1
- Pytorch 1.13.0
- Datasets 2.1.0
- Tokenizers 0.13.2