linkanjarad commited on
Commit
214dc8b
1 Parent(s): 5d47f34

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +79 -0
README.md ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - image_folder
7
+ metrics:
8
+ - accuracy
9
+ model-index:
10
+ - name: mobilenet_v2_1.0_224-plant-disease-identification
11
+ results:
12
+ - task:
13
+ name: Image Classification
14
+ type: image-classification
15
+ dataset:
16
+ name: image_folder
17
+ type: image_folder
18
+ config: default
19
+ split: train
20
+ args: default
21
+ metrics:
22
+ - name: Accuracy
23
+ type: accuracy
24
+ value: 0.7145092460881934
25
+ ---
26
+
27
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
28
+ should probably proofread and complete it, then remove this comment. -->
29
+
30
+ # mobilenet_v2_1.0_224-plant-disease-identification
31
+
32
+ This model is a fine-tuned version of [google/mobilenet_v2_1.0_224](https://huggingface.co/google/mobilenet_v2_1.0_224) on the image_folder dataset.
33
+ It achieves the following results on the evaluation set:
34
+ - Loss: 1.3799
35
+ - Accuracy: 0.7145
36
+
37
+ ## Model description
38
+
39
+ More information needed
40
+
41
+ ## Intended uses & limitations
42
+
43
+ More information needed
44
+
45
+ ## Training and evaluation data
46
+
47
+ More information needed
48
+
49
+ ## Training procedure
50
+
51
+ ### Training hyperparameters
52
+
53
+ The following hyperparameters were used during training:
54
+ - learning_rate: 0.0003
55
+ - train_batch_size: 256
56
+ - eval_batch_size: 256
57
+ - seed: 42
58
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
59
+ - lr_scheduler_type: linear
60
+ - lr_scheduler_warmup_ratio: 0.1
61
+ - num_epochs: 5
62
+
63
+ ### Training results
64
+
65
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
66
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
67
+ | 2.3889 | 1.0 | 248 | 2.1952 | 0.6310 |
68
+ | 1.8202 | 2.0 | 496 | 1.6363 | 0.7013 |
69
+ | 1.6266 | 3.0 | 744 | 1.6291 | 0.6343 |
70
+ | 1.5566 | 4.0 | 992 | 1.3514 | 0.7129 |
71
+ | 1.5507 | 5.0 | 1240 | 1.3799 | 0.7145 |
72
+
73
+
74
+ ### Framework versions
75
+
76
+ - Transformers 4.26.1
77
+ - Pytorch 1.13.0
78
+ - Datasets 2.1.0
79
+ - Tokenizers 0.13.2