open-universe / config.yaml
fakufaku's picture
Adds config and weights of UNIVERSE++
9b6704c
raw
history blame
5.17 kB
seed: 46762398
ckpt_path: null
train: true
test: false
path:
exp_root: exp
figures: figures
version_base: null
datamodule:
_target_: open_universe.datasets.DataModule
train:
dataset: vb-train-16k
dl_opts:
pin_memory: true
num_workers: 6
shuffle: true
batch_size: 10
val:
dataset: vb-val-16k
dl_opts:
pin_memory: true
num_workers: 4
shuffle: false
batch_size: 1
test:
dataset: vb-test-16k
dl_opts:
pin_memory: true
num_workers: 4
shuffle: false
batch_size: 1
datasets:
vb-train-16k:
_target_: open_universe.datasets.NoisyDataset
audio_path: data/voicebank_demand/16k
fs: 16000
split: train
audio_len: 2.0
vb-val-16k:
_target_: open_universe.datasets.NoisyDataset
audio_path: ${..vb-train-16k.audio_path}
fs: ${..vb-train-16k.fs}
split: val
audio_len: null
vb-test-16k:
_target_: open_universe.datasets.NoisyDataset
audio_path: ${..vb-train-16k.audio_path}
fs: ${..vb-train-16k.fs}
split: test
audio_len: null
vb-train-24k:
_target_: open_universe.datasets.NoisyDataset
audio_path: data/voicebank_demand/24k
fs: 24000
split: train
audio_len: 2.0
vb-val-24k:
_target_: open_universe.datasets.NoisyDataset
audio_path: ${..vb-train-24k.audio_path}
fs: ${..vb-train-24k.fs}
split: val
audio_len: null
vb-test-24k:
_target_: open_universe.datasets.NoisyDataset
audio_path: ${..vb-train-24k.audio_path}
fs: ${..vb-train-24k.fs}
split: test
audio_len: null
model:
_target_: open_universe.networks.universe.UniverseGAN
fs: 16000
normalization_norm: 2
normalization_kwargs:
ref: both
level_db: -26.0
edm:
noise: 0.25
score_model:
_target_: open_universe.networks.universe.ScoreNetwork
fb_kernel_size: 3
rate_factors:
- 2
- 4
- 4
- 5
n_channels: 32
n_rff: 32
noise_cond_dim: 512
encoder_gru_conv_sandwich: false
extra_conv_block: true
decoder_act_type: prelu
use_weight_norm: true
use_antialiasing: true
time_embedding: simple
condition_model:
_target_: open_universe.networks.universe.ConditionerNetwork
fb_kernel_size: ${model.score_model.fb_kernel_size}
rate_factors: ${model.score_model.rate_factors}
n_channels: ${model.score_model.n_channels}
n_mels: 80
n_mel_oversample: 4
encoder_gru_residual: true
extra_conv_block: ${model.score_model.extra_conv_block}
decoder_act_type: prelu
use_weight_norm: ${model.score_model.use_weight_norm}
use_antialiasing: false
diffusion:
schedule: geometric
sigma_min: 0.0005
sigma_max: 5.0
n_steps: 8
epsilon: 1.3
losses:
multi_period_discriminator:
mpd_reshapes:
- 2
- 3
- 5
- 7
- 11
use_spectral_norm: false
discriminator_channel_mult: 1
multi_resolution_discriminator:
resolutions:
- - 1024
- 120
- 600
- - 2048
- 240
- 1200
- - 512
- 50
- 240
use_spectral_norm: false
discriminator_channel_mult: 1
disc_freeze_step: 0
weights:
mel_l1: 45.0
score: 1.0
use_signal_decoupling: true
signal_decoupling_act: snake
score_loss:
_target_: torch.nn.MSELoss
training:
audio_len: ${datamodule.datasets.vb-train-16k.audio_len}
time_sampling: time_normal_0.95
dynamic_mixing: false
ema_decay: 0.999
validation:
main_loss: val/pesq
main_loss_mode: max
n_bins: 5
max_enh_batches: 4
enh_losses:
val/:
_target_: open_universe.metrics.EvalMetrics
audio_fs: ${model.fs}
optimizer:
accumulate_grad_batches: 1
generator:
_target_: torch.optim.AdamW
lr: 0.0002
weight_decay: 0.01
betas:
- 0.8
- 0.99
weight_decay_exclude:
- prelu
- bias
discriminator:
_target_: torch.optim.AdamW
lr: 0.0002
betas:
- 0.8
- 0.99
grad_clip_vals:
mrd: 1000.0
mpd: 1000.0
score: 1000.0
cond: 1000.0
scheduler:
generator:
scheduler:
_target_: open_universe.utils.schedulers.LinearWarmupCosineAnnealingLR
T_warmup: 20000
T_cosine: 400000
eta_min: 1.6e-06
T_max: ${trainer.max_steps}
interval: step
frequency: 1
discriminator:
scheduler:
_target_: open_universe.utils.schedulers.LinearWarmupCosineAnnealingLR
T_warmup: 20000
T_cosine: 400000
eta_min: 1.6e-06
T_max: ${trainer.max_steps}
interval: step
frequency: 1
grad_clipper:
_target_: open_universe.utils.FixedClipper
max_norm: 1000.0
trainer:
_target_: pytorch_lightning.Trainer
accumulate_grad_batches: 1
min_epochs: 1
max_epochs: -1
max_steps: 600000
deterministic: warn
accelerator: gpu
devices: -1
strategy: ddp_find_unused_parameters_true
check_val_every_n_epoch: null
val_check_interval: 5000
default_root_dir: .
profiler: false