File size: 5,174 Bytes
f0d6f7d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b6704c
f0d6f7d
 
 
 
 
9b6704c
 
f0d6f7d
 
 
 
 
 
 
 
 
 
 
 
 
 
9b6704c
 
 
f0d6f7d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b6704c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f0d6f7d
9b6704c
f0d6f7d
9b6704c
 
f0d6f7d
 
 
 
9b6704c
f0d6f7d
 
 
 
 
 
 
 
 
 
 
 
9b6704c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f0d6f7d
9b6704c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f0d6f7d
 
 
 
 
 
 
 
9b6704c
f0d6f7d
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
seed: 46762398
ckpt_path: null
train: true
test: false
path:
  exp_root: exp
  figures: figures
version_base: null
datamodule:
  _target_: open_universe.datasets.DataModule
  train:
    dataset: vb-train-16k
    dl_opts:
      pin_memory: true
      num_workers: 6
      shuffle: true
      batch_size: 10
  val:
    dataset: vb-val-16k
    dl_opts:
      pin_memory: true
      num_workers: 4
      shuffle: false
      batch_size: 1
  test:
    dataset: vb-test-16k
    dl_opts:
      pin_memory: true
      num_workers: 4
      shuffle: false
      batch_size: 1
  datasets:
    vb-train-16k:
      _target_: open_universe.datasets.NoisyDataset
      audio_path: data/voicebank_demand/16k
      fs: 16000
      split: train
      audio_len: 2.0
    vb-val-16k:
      _target_: open_universe.datasets.NoisyDataset
      audio_path: ${..vb-train-16k.audio_path}
      fs: ${..vb-train-16k.fs}
      split: val
      audio_len: null
    vb-test-16k:
      _target_: open_universe.datasets.NoisyDataset
      audio_path: ${..vb-train-16k.audio_path}
      fs: ${..vb-train-16k.fs}
      split: test
      audio_len: null
    vb-train-24k:
      _target_: open_universe.datasets.NoisyDataset
      audio_path: data/voicebank_demand/24k
      fs: 24000
      split: train
      audio_len: 2.0
    vb-val-24k:
      _target_: open_universe.datasets.NoisyDataset
      audio_path: ${..vb-train-24k.audio_path}
      fs: ${..vb-train-24k.fs}
      split: val
      audio_len: null
    vb-test-24k:
      _target_: open_universe.datasets.NoisyDataset
      audio_path: ${..vb-train-24k.audio_path}
      fs: ${..vb-train-24k.fs}
      split: test
      audio_len: null
model:
  _target_: open_universe.networks.universe.UniverseGAN
  fs: 16000
  normalization_norm: 2
  normalization_kwargs:
    ref: both
    level_db: -26.0
  edm:
    noise: 0.25
  score_model:
    _target_: open_universe.networks.universe.ScoreNetwork
    fb_kernel_size: 3
    rate_factors:
    - 2
    - 4
    - 4
    - 5
    n_channels: 32
    n_rff: 32
    noise_cond_dim: 512
    encoder_gru_conv_sandwich: false
    extra_conv_block: true
    decoder_act_type: prelu
    use_weight_norm: true
    use_antialiasing: true
    time_embedding: simple
  condition_model:
    _target_: open_universe.networks.universe.ConditionerNetwork
    fb_kernel_size: ${model.score_model.fb_kernel_size}
    rate_factors: ${model.score_model.rate_factors}
    n_channels: ${model.score_model.n_channels}
    n_mels: 80
    n_mel_oversample: 4
    encoder_gru_residual: true
    extra_conv_block: ${model.score_model.extra_conv_block}
    decoder_act_type: prelu
    use_weight_norm: ${model.score_model.use_weight_norm}
    use_antialiasing: false
  diffusion:
    schedule: geometric
    sigma_min: 0.0005
    sigma_max: 5.0
    n_steps: 8
    epsilon: 1.3
  losses:
    multi_period_discriminator:
      mpd_reshapes:
      - 2
      - 3
      - 5
      - 7
      - 11
      use_spectral_norm: false
      discriminator_channel_mult: 1
    multi_resolution_discriminator:
      resolutions:
      - - 1024
        - 120
        - 600
      - - 2048
        - 240
        - 1200
      - - 512
        - 50
        - 240
      use_spectral_norm: false
      discriminator_channel_mult: 1
    disc_freeze_step: 0
    weights:
      mel_l1: 45.0
      score: 1.0
    use_signal_decoupling: true
    signal_decoupling_act: snake
    score_loss:
      _target_: torch.nn.MSELoss
  training:
    audio_len: ${datamodule.datasets.vb-train-16k.audio_len}
    time_sampling: time_normal_0.95
    dynamic_mixing: false
    ema_decay: 0.999
  validation:
    main_loss: val/pesq
    main_loss_mode: max
    n_bins: 5
    max_enh_batches: 4
    enh_losses:
      val/:
        _target_: open_universe.metrics.EvalMetrics
        audio_fs: ${model.fs}
  optimizer:
    accumulate_grad_batches: 1
    generator:
      _target_: torch.optim.AdamW
      lr: 0.0002
      weight_decay: 0.01
      betas:
      - 0.8
      - 0.99
      weight_decay_exclude:
      - prelu
      - bias
    discriminator:
      _target_: torch.optim.AdamW
      lr: 0.0002
      betas:
      - 0.8
      - 0.99
    grad_clip_vals:
      mrd: 1000.0
      mpd: 1000.0
      score: 1000.0
      cond: 1000.0
  scheduler:
    generator:
      scheduler:
        _target_: open_universe.utils.schedulers.LinearWarmupCosineAnnealingLR
        T_warmup: 20000
        T_cosine: 400000
        eta_min: 1.6e-06
        T_max: ${trainer.max_steps}
      interval: step
      frequency: 1
    discriminator:
      scheduler:
        _target_: open_universe.utils.schedulers.LinearWarmupCosineAnnealingLR
        T_warmup: 20000
        T_cosine: 400000
        eta_min: 1.6e-06
        T_max: ${trainer.max_steps}
      interval: step
      frequency: 1
  grad_clipper:
    _target_: open_universe.utils.FixedClipper
    max_norm: 1000.0
trainer:
  _target_: pytorch_lightning.Trainer
  accumulate_grad_batches: 1
  min_epochs: 1
  max_epochs: -1
  max_steps: 600000
  deterministic: warn
  accelerator: gpu
  devices: -1
  strategy: ddp_find_unused_parameters_true
  check_val_every_n_epoch: null
  val_check_interval: 5000
  default_root_dir: .
  profiler: false