Add new SentenceTransformer model

#3
by tomaarsen HF staff - opened
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md CHANGED
@@ -2950,12 +2950,12 @@ doc_embeddings = model.encode([
2950
  "search_document: TSNE is a dimensionality reduction algorithm created by Laurens van Der Maaten",
2951
  ])
2952
  print(query_embeddings.shape, doc_embeddings.shape)
2953
- # (2, 768) (1, 768)
2954
 
2955
  similarities = model.similarity(query_embeddings, doc_embeddings)
2956
  print(similarities)
2957
- # tensor([[0.7214],
2958
- # [0.3260]])
2959
  ```
2960
 
2961
  <details><summary>Click to see Sentence Transformers usage with Matryoshka Truncation</summary>
@@ -2979,8 +2979,8 @@ print(query_embeddings.shape, doc_embeddings.shape)
2979
 
2980
  similarities = model.similarity(query_embeddings, doc_embeddings)
2981
  print(similarities)
2982
- # tensor([[0.7759],
2983
- # [0.3419]])
2984
  ```
2985
 
2986
  Note the small differences compared to the full 1024-dimensional similarities.
@@ -3023,12 +3023,12 @@ query_embeddings = F.normalize(query_embeddings, p=2, dim=1)
3023
  doc_embeddings = mean_pooling(documents_outputs, encoded_documents["attention_mask"])
3024
  doc_embeddings = F.normalize(doc_embeddings, p=2, dim=1)
3025
  print(query_embeddings.shape, doc_embeddings.shape)
3026
- # torch.Size([2, 768]) torch.Size([1, 768])
3027
 
3028
  similarities = query_embeddings @ doc_embeddings.T
3029
  print(similarities)
3030
- # tensor([[0.7214],
3031
- # [0.3260]])
3032
  ```
3033
 
3034
  <details><summary>Click to see Transformers usage with Matryoshka Truncation</summary>
@@ -3076,11 +3076,11 @@ print(query_embeddings.shape, doc_embeddings.shape)
3076
 
3077
  similarities = query_embeddings @ doc_embeddings.T
3078
  print(similarities)
3079
- # tensor([[0.7759],
3080
- # [0.3419]])
3081
  ```
3082
 
3083
- Note the small differences compared to the full 768-dimensional similarities.
3084
 
3085
  </details>
3086
 
@@ -3116,7 +3116,7 @@ const doc_embeddings = await extractor([
3116
 
3117
  // Compute similarity scores
3118
  const similarities = await matmul(query_embeddings, doc_embeddings.transpose(1, 0));
3119
- console.log(similarities.tolist()); // [[0.721383273601532], [0.3259955644607544]]
3120
  ```
3121
 
3122
 
 
2950
  "search_document: TSNE is a dimensionality reduction algorithm created by Laurens van Der Maaten",
2951
  ])
2952
  print(query_embeddings.shape, doc_embeddings.shape)
2953
+ # (2, 1024) (1, 1024)
2954
 
2955
  similarities = model.similarity(query_embeddings, doc_embeddings)
2956
  print(similarities)
2957
+ # tensor([[0.6518],
2958
+ # [0.4237]])
2959
  ```
2960
 
2961
  <details><summary>Click to see Sentence Transformers usage with Matryoshka Truncation</summary>
 
2979
 
2980
  similarities = model.similarity(query_embeddings, doc_embeddings)
2981
  print(similarities)
2982
+ # tensor([[0.6835],
2983
+ # [0.3982]])
2984
  ```
2985
 
2986
  Note the small differences compared to the full 1024-dimensional similarities.
 
3023
  doc_embeddings = mean_pooling(documents_outputs, encoded_documents["attention_mask"])
3024
  doc_embeddings = F.normalize(doc_embeddings, p=2, dim=1)
3025
  print(query_embeddings.shape, doc_embeddings.shape)
3026
+ # torch.Size([2, 1024]) torch.Size([1, 1024])
3027
 
3028
  similarities = query_embeddings @ doc_embeddings.T
3029
  print(similarities)
3030
+ # tensor([[0.6518],
3031
+ # [0.4237]])
3032
  ```
3033
 
3034
  <details><summary>Click to see Transformers usage with Matryoshka Truncation</summary>
 
3076
 
3077
  similarities = query_embeddings @ doc_embeddings.T
3078
  print(similarities)
3079
+ # tensor([[0.6835],
3080
+ # [0.3982]])
3081
  ```
3082
 
3083
+ Note the small differences compared to the full 1024-dimensional similarities.
3084
 
3085
  </details>
3086
 
 
3116
 
3117
  // Compute similarity scores
3118
  const similarities = await matmul(query_embeddings, doc_embeddings.transpose(1, 0));
3119
+ console.log(similarities.tolist());
3120
  ```
3121
 
3122
 
config.json CHANGED
@@ -1,5 +1,5 @@
1
  {
2
- "_name_or_path": "lightonai/modernbert-embed-large-unsupervised-lowerlr",
3
  "architectures": [
4
  "ModernBertModel"
5
  ],
 
1
  {
2
+ "_name_or_path": "lightonai/modernbert-embed-large",
3
  "architectures": [
4
  "ModernBertModel"
5
  ],
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.4.0.dev0",
4
+ "transformers": "4.48.0.dev0",
5
+ "pytorch": "2.6.0.dev20241112+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 8192,
3
+ "do_lower_case": false
4
+ }