Add new SentenceTransformer model
#3
by
tomaarsen
HF staff
- opened
- 1_Pooling/config.json +10 -0
- README.md +12 -12
- config.json +1 -1
- config_sentence_transformers.json +10 -0
- modules.json +20 -0
- sentence_bert_config.json +4 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 1024,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
CHANGED
@@ -2950,12 +2950,12 @@ doc_embeddings = model.encode([
|
|
2950 |
"search_document: TSNE is a dimensionality reduction algorithm created by Laurens van Der Maaten",
|
2951 |
])
|
2952 |
print(query_embeddings.shape, doc_embeddings.shape)
|
2953 |
-
# (2,
|
2954 |
|
2955 |
similarities = model.similarity(query_embeddings, doc_embeddings)
|
2956 |
print(similarities)
|
2957 |
-
# tensor([[0.
|
2958 |
-
# [0.
|
2959 |
```
|
2960 |
|
2961 |
<details><summary>Click to see Sentence Transformers usage with Matryoshka Truncation</summary>
|
@@ -2979,8 +2979,8 @@ print(query_embeddings.shape, doc_embeddings.shape)
|
|
2979 |
|
2980 |
similarities = model.similarity(query_embeddings, doc_embeddings)
|
2981 |
print(similarities)
|
2982 |
-
# tensor([[0.
|
2983 |
-
# [0.
|
2984 |
```
|
2985 |
|
2986 |
Note the small differences compared to the full 1024-dimensional similarities.
|
@@ -3023,12 +3023,12 @@ query_embeddings = F.normalize(query_embeddings, p=2, dim=1)
|
|
3023 |
doc_embeddings = mean_pooling(documents_outputs, encoded_documents["attention_mask"])
|
3024 |
doc_embeddings = F.normalize(doc_embeddings, p=2, dim=1)
|
3025 |
print(query_embeddings.shape, doc_embeddings.shape)
|
3026 |
-
# torch.Size([2,
|
3027 |
|
3028 |
similarities = query_embeddings @ doc_embeddings.T
|
3029 |
print(similarities)
|
3030 |
-
# tensor([[0.
|
3031 |
-
# [0.
|
3032 |
```
|
3033 |
|
3034 |
<details><summary>Click to see Transformers usage with Matryoshka Truncation</summary>
|
@@ -3076,11 +3076,11 @@ print(query_embeddings.shape, doc_embeddings.shape)
|
|
3076 |
|
3077 |
similarities = query_embeddings @ doc_embeddings.T
|
3078 |
print(similarities)
|
3079 |
-
# tensor([[0.
|
3080 |
-
# [0.
|
3081 |
```
|
3082 |
|
3083 |
-
Note the small differences compared to the full
|
3084 |
|
3085 |
</details>
|
3086 |
|
@@ -3116,7 +3116,7 @@ const doc_embeddings = await extractor([
|
|
3116 |
|
3117 |
// Compute similarity scores
|
3118 |
const similarities = await matmul(query_embeddings, doc_embeddings.transpose(1, 0));
|
3119 |
-
console.log(similarities.tolist());
|
3120 |
```
|
3121 |
|
3122 |
|
|
|
2950 |
"search_document: TSNE is a dimensionality reduction algorithm created by Laurens van Der Maaten",
|
2951 |
])
|
2952 |
print(query_embeddings.shape, doc_embeddings.shape)
|
2953 |
+
# (2, 1024) (1, 1024)
|
2954 |
|
2955 |
similarities = model.similarity(query_embeddings, doc_embeddings)
|
2956 |
print(similarities)
|
2957 |
+
# tensor([[0.6518],
|
2958 |
+
# [0.4237]])
|
2959 |
```
|
2960 |
|
2961 |
<details><summary>Click to see Sentence Transformers usage with Matryoshka Truncation</summary>
|
|
|
2979 |
|
2980 |
similarities = model.similarity(query_embeddings, doc_embeddings)
|
2981 |
print(similarities)
|
2982 |
+
# tensor([[0.6835],
|
2983 |
+
# [0.3982]])
|
2984 |
```
|
2985 |
|
2986 |
Note the small differences compared to the full 1024-dimensional similarities.
|
|
|
3023 |
doc_embeddings = mean_pooling(documents_outputs, encoded_documents["attention_mask"])
|
3024 |
doc_embeddings = F.normalize(doc_embeddings, p=2, dim=1)
|
3025 |
print(query_embeddings.shape, doc_embeddings.shape)
|
3026 |
+
# torch.Size([2, 1024]) torch.Size([1, 1024])
|
3027 |
|
3028 |
similarities = query_embeddings @ doc_embeddings.T
|
3029 |
print(similarities)
|
3030 |
+
# tensor([[0.6518],
|
3031 |
+
# [0.4237]])
|
3032 |
```
|
3033 |
|
3034 |
<details><summary>Click to see Transformers usage with Matryoshka Truncation</summary>
|
|
|
3076 |
|
3077 |
similarities = query_embeddings @ doc_embeddings.T
|
3078 |
print(similarities)
|
3079 |
+
# tensor([[0.6835],
|
3080 |
+
# [0.3982]])
|
3081 |
```
|
3082 |
|
3083 |
+
Note the small differences compared to the full 1024-dimensional similarities.
|
3084 |
|
3085 |
</details>
|
3086 |
|
|
|
3116 |
|
3117 |
// Compute similarity scores
|
3118 |
const similarities = await matmul(query_embeddings, doc_embeddings.transpose(1, 0));
|
3119 |
+
console.log(similarities.tolist());
|
3120 |
```
|
3121 |
|
3122 |
|
config.json
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
{
|
2 |
-
"_name_or_path": "lightonai/modernbert-embed-large
|
3 |
"architectures": [
|
4 |
"ModernBertModel"
|
5 |
],
|
|
|
1 |
{
|
2 |
+
"_name_or_path": "lightonai/modernbert-embed-large",
|
3 |
"architectures": [
|
4 |
"ModernBertModel"
|
5 |
],
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.4.0.dev0",
|
4 |
+
"transformers": "4.48.0.dev0",
|
5 |
+
"pytorch": "2.6.0.dev20241112+cu121"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": "cosine"
|
10 |
+
}
|
modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Normalize",
|
18 |
+
"type": "sentence_transformers.models.Normalize"
|
19 |
+
}
|
20 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 8192,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|