|
--- |
|
language: |
|
- es |
|
license: isc |
|
library_name: flair |
|
tags: |
|
- flair |
|
- token-classification |
|
metrics: |
|
- f1 |
|
- precision |
|
- recall |
|
- accuracy |
|
widget: |
|
- text: "Jean Paul Gaultier Classique - 50 ML Eau de Parfum Damen Parfum" |
|
--- |
|
|
|
### Demo: How to use in Flair |
|
Requires: |
|
- **[Flair](https://github.com/flairNLP/flair/)** (`pip install flair`) |
|
|
|
```python |
|
from flair.data import Sentence |
|
from flair.models import SequenceTagger |
|
|
|
# load tagger |
|
tagger = SequenceTagger.load("lighthousefeed/yoda-ner") |
|
|
|
# make example sentence |
|
sentence = Sentence("Jean Paul Gaultier Classique - 50 ML Eau de Parfum Damen Parfum.") |
|
|
|
# predict NER tags |
|
tagger.predict(sentence) |
|
|
|
# print sentence |
|
print(sentence) |
|
|
|
# print predicted NER spans |
|
print('The following NER tags are found:') |
|
|
|
# iterate over entities and print |
|
for entity in sentence.get_spans('ner'): |
|
print(entity) |
|
``` |